1,440 research outputs found

    Anchoring of Aminophosphonates on Titanium Oxide for Biomolecular Coupling

    Get PDF
    Aminophosphonates were chosen for a first step functionalization of TiO2 grown on titanium, as they possess a phosphonate group on one end, that can be exploited for coupling with the oxide surface, and an amino group on the other end to enable further functionalization of the surface. The deposition of aminophosphonates with different chain lengths (6 and 12 methylenes) was investigated. Oxygen plasma treatment proved useful in increasing the number of 12OH groups at the TiO2 surface, thus helping to anchor the aminophosphonates. By combining different surface-sensitive experimental techniques, we found the existence of a discontinuous monolayer where the molecules are covalently coupled to the TiO2 surface. For the molecules with longer chains, we find evidence of their covalent coupling to the surface through Ti\u2013O\u2013P bond formation, of the exposure of the amino groups at the outer surface, and of an increase in the order of the layer upon thermal annealing

    Does embodied training improve the recognition of mid-level expressive movement qualities sonification?

    Get PDF
    This research is a part of a broader project exploring how movement qualities can be recognized by means of the auditory channel: can we perceive an expressive full-body movement quality by means of its interactive sonification? The paper presents a sonification framework and an experiment to evaluate if embodied sonic training (i.e., experiencing interactive sonification of your own body movements) increases the recognition of such qualities through the auditory channel only, compared to a non-embodied sonic training condition. We focus on the sonification of two mid-level movement qualities: fragility and lightness. We base our sonification models, described in the first part, on the assumption that specific compounds of spectral features of a sound can contribute to the cross-modal perception of a specific movement quality. The experiment, described in the second part, involved 40 participants divided into two groups (embodied sonic training vs. no training). Participants were asked to report the level of lightness and fragility they perceived in 20 audio stimuli generated using the proposed sonification models. Results show that (1) both expressive qualities were correctly recognized from the audio stimuli, (2) a positive effect of embodied sonic training was observed for fragility but not for lightness. The paper is concluded by the description of the artistic performance that took place in 2017 in Genoa (Italy), in which the outcomes of the presented experiment were exploited

    Correlated evolution of structure and mechanical loss of a sputtered silica film

    Full text link
    Energy dissipation in amorphous coatings severely affects high-precision optical and quantum transducers. In order to isolate the source of coating loss, we performed an extensive study of Raman scattering and mechanical loss of a thermally-treated sputtered silica coating. Our results show that loss is correlated with the population of three-membered rings of Si-O4_4 tetrahedral units, and support the evidence that thermal treatment reduces the density of metastable states separated by a characteristic energy of about 0.5 eV, in favour of an increase of the states separated by smaller activation energies. Finally, we conclude that three-fold rings are involved in the relaxation mechanisms only if they belong to more complex chain-like structures of 10 to 100 tetrahedra.Comment: 5 pages, 3 figure

    The dancer in the eye: Towards a multi-layered computational framework of qualities in movement

    Get PDF
    This paper presents a conceptual framework for the analysis of expressive qualities of movement. Our perspective is to model an observer of a dance performance. The conceptual framework is made of four layers, ranging from the physical signals that sensors capture to the qualities that movement communicate (e.g., in terms of emotions). The framework aims to provide a conceptual background the development of computational systems can build upon, with a particular reference to systems analyzing a vocabulary of expressive movement qualities, and translating them to other sensory channels, such as the auditory modality. Such systems enable their users to "listen to a choreography" or to "feel a ballet", in a new kind of cross-modal mediated experience

    Photochromic polyurethanes showing a strong change of transparency and refractive index

    Get PDF
    Photochromic polymers have been studied as rewritable systems for optical elements with tunable transparency in the visible and refractive index in the NIR. Six diarylethene monomers have been synthesized to give thin films of photochromic polyurethanes. The absorption properties of the monomers in solution and of the corresponding polymeric films have been evaluated showing that a transparency contrast in the visible spectrum of the order of 103can be obtained by a suitable choice of the chemical structure and illumination wavelength. The change in the refractive index in the NIR have been determined by ellipsometry showing changes larger than 10-2. A trend of this variation with the absorption properties has been also highlighted. Fresnel lenses working on the basis of both a change of the transparency and the refractive index (amplitude and phase) have been demonstrated

    Effective medium optical modelling of indium tin oxide nanocrystal films

    Get PDF
    : Doped semiconductor nanocrystal-based thin films are widely used for many applications, such as screens, electrochromic windows, light emitting diodes, and solar cells. Herein, we have employed spectroscopic ellipsometry to measure and model the complex dielectric response of indium tin oxide films fabricated by nanocrystal deposition and sintering. The films could be modelled as Bruggemann effective media, allowing estimation of the nanoscale interstitial porosity of the structure. The effective dielectric constants show the possibility of tuning the plasma frequency and the epsilon-near zero condition of the film

    Extreme sensory processing patterns show a complex association with depression, and impulsivity, alexithymia, and hopelessness

    Get PDF
    INTRODUCTION: The involvement of extreme sensory processing patterns, impulsivity, alexithymia, and hopelessness was hypothesized to contribute to the complex pathophysiology of major depression and bipolar disorder. However, the nature of the relation between these variables has not been thoroughly investigated. AIMS: This study aimed to explore the association between extreme sensory processing patterns, impulsivity, alexithymia, depression, and hopelessness. METHODS: We recruited 281 euthymic participants (mean age=47.4+/-12.1) of which 62.3% with unipolar major depression and 37.7% with bipolar disorder. All participants completed the Adolescent/Adult Sensory Profile (AASP), Toronto Alexithymia Scale (TAS-20), second version of the Beck Depression Inventory (BDI-II), Barratt Impulsivity Scale (BIS), and Beck Hopelessness Scale (BHS). RESULTS: Lower registration of sensory input showed a significant correlation with depression, impulsivity, attentional/motor impulsivity, and alexithymia. It was significantly more frequent among participants with elevated hopelessness, and accounted for 22% of the variance in depression severity, 15% in greater impulsivity, 36% in alexithymia, and 3% in hopelessness. Elevated sensory seeking correlated with enhanced motor impulsivity and decreased non-planning impulsivity. Higher sensory sensitivity and sensory avoiding correlated with depression, impulsivity, and alexithymia. LIMITATIONS: The study was limited by the relatively small sample size and cross-sectional nature of the study. Furthermore, only self-report measures that may be potentially biased by social desirability were used. CONCLUSION: Extreme sensory processing patterns, impulsivity, alexithymia, depression, and hopelessness may show a characteristic pattern in patients with major affective disorders. The careful assessment of sensory profiles may help in developing targeted interventions and improve functional/adaptive strategies

    Transparent conductive oxide-based architectures for the electrical modulation of the optical response: A spectroscopic ellipsometry study

    Get PDF
    Transparent conductive oxides are a class of materials that combine high optical transparency with high electrical conductivity. This property makes them uniquely appealing as transparent conductive electrodes in solar cells and interesting for optoelectronic and infrared-plasmonic applications. One of the new challenges that researchers and engineers are facing is merging optical and electrical control in a single device for developing next-generation photovoltaic, optoelectronic devices and energy-efficient solid-state lighting. In this work, the authors investigated the possible variations in the dielectric properties of aluminum-doped ZnO (AZO) upon gating by means of spectroscopic ellipsometry (SE). The authors investigated the electrical-bias-dependent optical response of thin AZO films fabricated by magnetron sputtering within a parallel-plane capacitor configuration. The authors address the possibility to control their optical and electric performances by applying bias, monitoring the effect of charge injection/depletion in the AZO layer by means of in operando SE versus applied gate voltage

    Observation of a Correlation Between Internal friction and Urbach Energy in Amorphous Oxides Thin Films

    Get PDF
    We have investigated by spectroscopic ellipsometry (SE, 190-1700 nm) the optical properties of uniform, amorphous thin films of Ta2O5 and Nb2O5 as deposited and after annealing, and after so-called "doping" with Ti atoms which leads to mixed oxides. Ta2O5 and Ti:Ta2O5 are currently used as high-index components in Bragg reflectors for Gravitational Wave Detectors. Parallel to the optical investigation, we measured the mechanical energy dissipation of the same coatings, through the so-called "loss angle" \u3d5\u2009=\u2009Q-1, which quantifies the energy loss in materials. By applying the well-known Cody-Lorentz model in the analysis of SE data we have been able to derive accurate information on the fundamental absorption edge through important parameters related to the electronic density of states, such as the optical gap (Eg) and the energy width of the exponential Urbach tail (the Urbach energy EU). We have found that EU is neatly reduced by suitable annealing as is also perceptible from direct inspection of SE data. Ti-doping also points to a minor decrease of EU. The reduction of EU parallels a lowering of the mechanical losses quantified by the loss angle \u3d5. The correlation highlights that both the electronic states responsible of Urbach tail and the internal friction are sensitive to a self-correlation of defects on a medium-range scale, which is promoted by annealing and in our case, to a lesser extent, by doping. These observations may contribute to a better understanding of the relationship between structural and mechanical properties in amorphous oxides
    corecore