6,478 research outputs found

    Bone-Anchored Hearing Aids Fitted According to NAL and DSL Procedures in Adults with Mixed Hearing Loss

    Get PDF
    BACKGROUND: Bone-anchored hearing aids represent a valid alternative for patients with conductive/mixed hearing loss who cannot use hearing aids. To date, these devices have given good audiological results, thanks to various fitting prescription programs (i.e., National Acoustic Laboratories and Desired Sensation Level). The aim of this study is to compare 2 types of fitting algorithms (National Acoustic Laboratories and Desired Sensation Level) implemented for bone-anchored hearing devices. METHODS: We retrospectively enrolled 10 patients followed at our operative unit, suffering from bilateral symmetrical mixed hearing loss and who underwent bone-anchored hearing aid implantation. All patients experienced each prescriptive procedure, National Acoustic Laboratories and Desired Sensation Level, for 7 months (on average), and they were subjected to audiological tests and questionnaires to evaluate the best program. RESULTS: National Acoustic Laboratories and Desired Sensation Level prescriptions yielded similar results. Desired Sensation Level allowed less amplification of the low frequencies than the National Acoustic Laboratories prescription, and these differences were the only statistically significant. Desired Sensation Level allowed better disyllabic word and sentence recognition scores only in quiet and not in noisy conditions. The subjective questionnaires showed similar results. At the end of the trial sessions, more patients (60%) definitively chose the Desired Sensation Level program for their device. These patients were those with a worse hearing threshold. CONCLUSION: The 2 prescriptive programs allowed similar results although patients with a worse threshold seem to prefer the DSL program. This is the first evaluation of the 2 prescriptive programs, National Acoustic Laboratories versus Desired Sensation Level, for bone conduction devices available in the literature. Further studies are needed to confirm this initial finding

    Characterization of irradiated RD53A pixel modules with passive CMOS sensors

    Full text link
    We are investigating the feasibility of using CMOS foundries to fabricate silicon detectors, both for pixels and for large-area strip sensors. The availability of multi-layer routing will provide the freedom to optimize the sensor geometry and the performance, with biasing structures in poly-silicon layers and MIM-capacitors allowing for AC coupling. A prototyping production of strip test-structures and RD53A compatible pixel sensors was recently completed at LFoundry in a 150\,nm CMOS process. This paper will focus on the characterization of irradiated and non-irradiated pixel modules, composed by a CMOS passive sensor interconnected to a RD53A chip. The sensors are designed with a pixel cell of 25×100μm225\times100\,\mu \mathrm{m}^2 in case of DC coupled devices and 50×50μm250\times50\,\mu \mathrm{m}^2 for the AC coupled ones. Their performance in terms of charge collection, position resolution, and hit efficiency was studied with measurements performed in the laboratory and with beam tests. The RD53A modules with LFoundry silicon sensors were irradiated to fluences up to 1.0×1016neqcm21.0\times10^{16}\,\frac{\mathrm{n}_\mathrm{eq}}{\mathrm{cm}^2}

    The Audiological Follow-Up of Children with Symptomatic Congenital Cytomegalovirus Infection: An Experience in Two Italian Centers

    Get PDF
    Background: Congenital cytomegalovirus (cCMV) infection is the leading cause of non-hereditary sensorineural hearing loss in children. While about 10% of children reportedly display symptoms at birth, 85-90% of cCMV infection cases are asymptomatic. However, 10-15% of these asymptomatic infants may later develop hearing, visual, or neurodevelopmental impairments. This study aimed to evaluate the impact of cCMV infection on newborns' hearing function with a particular emphasis on progressive and late-onset cases. Methods: This study is a retrospective chart analysis with longitudinal character and was conducted in two Italian centers: Center 1 (from 1 November 2007 to 31 December 2021) and Center 2 (from 1 January 2012 to 31 December 2021). Data collected included newborn hearing screening results, characterization of hearing loss (unilateral/bilateral, degree of impairment), and audiological follow-up. Results: The cohort consisted of 103 children (42% males, 58% females). In total, 28 children presented with hearing impairment; 71.4% (20 out of 28) of the cases of hearing loss were severe/profound, with 35.7% of the cases due to unilateral hearing loss. Out of twenty-eight, six experienced progression of hearing loss and four had late-onset hearing loss. Conclusions: In the absence of universal cCMV screening, hearing screening at birth for cCMV remains a critical factor for early diagnosis. A significant percentage of children affected by cCMV with normal audiological evaluations at birth is easily lost to follow-up. Close collaboration between neonatologists, pediatricians, and audiological services is fundamental to ensure timely diagnosis and treatment of cCMV-related hearing loss

    The Evolution of FTK, a Real-Time Tracker for Hadron Collider Experiments

    Full text link
    We describe the architecture evolution of the highly-parallel dedicated processor FTK, which is driven by the simulation of LHC events at high luminosity (1034 cm-2 s-1). FTK is able to provide precise on-line track reconstruction for future hadronic collider experiments. The processor, organized in a two-tiered pipelined architecture, execute very fast algorithms based on the use of a large bank of pre-stored patterns of trajectory points (first tier) in combination with full resolution track fitting to refine pattern recognition and to determine off-line quality track parameters. We describe here how the high luminosity simulation results have produced a new organization of the hardware inside the FTK processor core.Comment: 11th ICATPP conferenc

    Cosmic ray tests of the D0 preshower detector

    Full text link
    The D0 preshower detector consists of scintillator strips with embedded wavelength-shifting fibers, and a readout using Visible Light Photon Counters. The response to minimum ionizing particles has been tested with cosmic ray muons. We report results on the gain calibration and light-yield distributions. The spatial resolution is investigated taking into account the light sharing between strips, the effects of multiple scattering and various systematic uncertainties. The detection efficiency and noise contamination are also investigated.Comment: 27 pages, 24 figures, submitted to NIM

    Determination of the Jet Energy Scale at the Collider Detector at Fermilab

    Full text link
    A precise determination of the energy scale of jets at the Collider Detector at Fermilab at the Tevatron ppˉp\bar{p} collider is described. Jets are used in many analyses to estimate the energies of partons resulting from the underlying physics process. Several correction factors are developed to estimate the original parton energy from the observed jet energy in the calorimeter. The jet energy response is compared between data and Monte Carlo simulation for various physics processes, and systematic uncertainties on the jet energy scale are determined. For jets with transverse momenta above 50 GeV the jet energy scale is determined with a 3% systematic uncertainty

    Wearable Haptic Devices for Gait Re-education by Rhythmic Haptic Cueing

    Get PDF
    This research explores the development and evaluation of wearable haptic devices for gait sensing and rhythmic haptic cueing in the context of gait re-education for people with neurological and neurodegenerative conditions. Many people with long-term neurological and neurodegenerative conditions such as Stroke, Brain Injury, Multiple Sclerosis or Parkinson’s disease suffer from impaired walking gait pattern. Gait improvement can lead to better fluidity in walking, improved health outcomes, greater independence, and enhanced quality of life. Existing lab-based studies with wearable devices have shown that rhythmic haptic cueing can cause immediate improvements to gait features such as temporal symmetry, stride length, and walking speed. However, current wearable systems are unsuitable for self-managed use for in-the-wild applications with people having such conditions. This work aims to investigate the research question of how wearable haptic devices can help in long-term gait re-education using rhythmic haptic cueing. A longitudinal pilot study has been conducted with a brain trauma survivor, providing rhythmic haptic cueing using a wearable haptic device as a therapeutic intervention for a two-week period. Preliminary results comparing pre and post-intervention gait measurements have shown improvements in walking speed, temporal asymmetry, and stride length. The pilot study has raised an array of issues that require further study. This work aims to develop and evaluate prototype systems through an iterative design process to make possible the self-managed use of such devices in-the-wild. These systems will directly provide therapeutic intervention for gait re-education, offer enhanced information for therapists, remotely monitor dosage adherence and inform treatment and prognoses over the long-term. This research will evaluate the use of technology from the perspective of multiple stakeholders, including clinicians, carers and patients. This work has the potential to impact clinical practice nationwide and worldwide in neuro-physiotherapy

    A Quasi-Model-Independent Search for New Physics at Large Transverse Momentum

    Get PDF
    We apply a quasi-model-independent strategy ("Sleuth") to search for new high p_T physics in approximately 100 pb^-1 of ppbar collisions at sqrt(s) = 1.8 TeV collected by the DZero experiment during 1992-1996 at the Fermilab Tevatron. Over thirty-two e mu X, W+jets-like, Z+jets-like, and 3(lepton/photon)X exclusive final states are systematically analyzed for hints of physics beyond the standard model. Simultaneous sensitivity to a variety of models predicting new phenomena at the electroweak scale is demonstrated by testing the method on a particular signature in each set of final states. No evidence of new high p_T physics is observed in the course of this search, and we find that 89% of an ensemble of hypothetical similar experimental runs would have produced a final state with a candidate signal more interesting than the most interesting observed in these data.Comment: 28 pages, 17 figures. Submitted to Physical Review

    Search for R-parity Violating Supersymmetry in Dimuon and Four-Jets Channel

    Get PDF
    We present results of a search for R-parity-violating decay of the neutralino chi_1^0, taken to be the Lightest Supersymmetric Particle. It is assumed that this decay proceeds through one of the lepton-number violating couplings lambda-prime_2jk (j=1,2; k=1,2,3). This search is based on 77.5 pb-1 of data, collected by the D0 experiment at the Fermilab Tevatron in ppbar collisions at a center of mass energy of 1.8 TeV in 1992-1995.Comment: 10 pages, 3 figure
    corecore