559 research outputs found

    Study of Jet Quenching in Relativistic Heavy-Ion Collisions

    Get PDF
    In this work, we investigate possible impacts that the behavior of the Quark-Gluon Plasma might have on Jet Observables. We choose JEWEL (Jet Evolution With Energy Loss) for this study. We have coupled JEWEL with TRENTo and also with MC-KLN+vUSPhydro for sim- ulations. The simulations were performed for PbPb collisions at sN N = 2.76 TeV in the 0 10% centrality class. We have found that jet shape observables are mainly unchanged by the inclusion of realistic hydrodynamics and initial conditions in these settings. We also made calculations for the jet v2. In this case, we have found that initial conditions do not affect this observable. In the case of realistic hydrodynamics, there is an improvement in the description of data.Neste trabalho nos investigamos possveis impactos que o plasma de Quarks e Gluons pode ter nos observaveis de Jatos. Nos escolhemos o JEWEL (Jet Evolution With Energy Loss) para este estudo. Nos acoplamos o JEWEL com o modelo TRENTo e tambem com o MC- KLN+vUSPhydro para as simulacoes. As simulaoes foram realizadas para colisoes chumbo- chumbo a energia sN N = 2.76 TeV para centralidade 010%. Nessas condicoes, observaveis de forma e geometria dos jatos nao sao modificados pela implementacao de uma hidrodinamica e condicoes iniciais realistas. Tambem calculamos o v2 dos jatos. Neste caso nos conclumos que as condicoes iniciais tambem nao afetam esse observavel. No caso da hidrodinamica realista, houve uma melhoria na descricao desse observavel

    Two-particle transverse momentum correlations in pp and p–Pb collisions at energies available at the CERN Large Hadron Collider

    No full text
    Two-particle transverse momentum differential correlators, recently measured in Pb--Pb collisions at energies available at the CERN Large Hadron Collider (LHC), provide an additional tool to gain insights into particle production mechanisms and infer transport properties, such as the ratio of shear viscosity to entropy density, of the medium created in Pb-Pb collisions. The longitudinal long-range correlations and the large azimuthal anisotropy measured at low transverse momenta in small collision systems, namely pp and p-Pb, at LHC energies resemble manifestations of collective behaviour. This suggests that locally equilibrated matter may be produced in these small collision systems, similar to what is observed in Pb-Pb collisions. In this work, the same two-particle transverse momentum differential correlators are exploited in pp and p-Pb collisions at s√=7 TeV and sNN−−−√=5.02 TeV, respectively, to seek evidence for viscous effects. Specifically, the strength and shape of the correlators are studied as a function of the produced particle multiplicity to identify evidence for longitudinal broadening that might reveal the presence of viscous effects in these smaller systems. The measured correlators and their evolution from pp and p--Pb to Pb--Pb collisions are additionally compared to predictions from Monte Carlo event generators, and the potential presence of viscous effects is discussed

    Enhanced deuteron coalescence probability in jets

    No full text
    The transverse-momentum (pT) spectra and coalescence parameters B2 of (anti)deuterons are measured in pp collisions at s√=13 TeV for the first time in and out of jets. In this measurement, the direction of the leading particle with the highest pT in the event (pleadT>5 GeV/c) is used as an approximation for the jet axis. The event is consequently divided into three azimuthal regions and the jet signal is obtained as the difference between the Toward region, that contains jet fragmentation products in addition to the underlying event (UE), and the Transverse region, which is dominated by the UE. The coalescence parameter in the jet is found to be approximately a factor of 10 larger than that in the underlying event. This experimental observation is consistent with the coalescence picture and can be attributed to the smaller average phase-space distance between nucleons inside the jet cone as compared to the underlying event. The results presented in this Letter are compared to predictions from a simple nucleon coalescence model, where the phase space distributions of nucleons are generated using PYTHIA 8 with the Monash 2013 tuning, and to predictions from a deuteron production model based on ordinary nuclear reactions with parametrized energy-dependent cross sections tuned on data. The latter model is implemented in PYTHIA 8.3. Both models reproduce the observed large difference between in-jet and out-of-jet coalescence parameters, although the almost flat trend of the BJet2 is not reproduced by the models, which instead give a decreasing trend

    Energy dependence of coherent photonuclear production of J/ψ mesons in ultra-peripheral Pb-Pb collisions at sNN \sqrt{{\textrm{s}}_{\textrm{NN}}} = 5.02 TeV

    No full text
    International audienceThe cross section for coherent photonuclear production of J/ψ is presented as a function of the electromagnetic dissociation (EMD) of Pb. The measurement is performed with the ALICE detector in ultra-peripheral Pb-Pb collisions at a centre-of-mass energy per nucleon pair of sNN \sqrt{{\textrm{s}}_{\textrm{NN}}} = 5.02 TeV. Cross sections are presented in five different J/ψ rapidity ranges within |y| < 4, with the J/ψ reconstructed via its dilepton decay channels. In some events the J/ψ is not accompanied by EMD, while other events do produce neutrons from EMD at beam rapidities either in one or the other beam direction, or in both. The cross sections in a given rapidity range and for different configurations of neutrons from EMD allow for the extraction of the energy dependence of this process in the range 17 < WÎłPb,n_{Îł Pb,n} < 920 GeV, where WÎłPb,n_{Îł Pb,n} is the centre-of-mass energy per nucleon of the ÎłPb system. This range corresponds to a Bjorken-x interval spanning about three orders of magnitude: 1.1 × 10−5^{−5} < x < 3.3 × 10−2^{−2}. In addition to the ultra-peripheral and photonuclear cross sections, the nuclear suppression factor is obtained. These measurements point to a strong depletion of the gluon distribution in Pb nuclei over a broad, previously unexplored, energy range. These results, together with previous ALICE measurements, provide unprecedented information to probe quantum chromodynamics at high energies.[graphic not available: see fulltext

    Charged-particle production as a function of the relative transverse activity classifier in pp, p–Pb, and Pb–Pb collisions at the LHC

    No full text
    Measurements of charged-particle production in pp, p−Pb, and Pb−Pb collisions in the toward, away, and transverse regions with the ALICE detector are discussed. These regions are defined event-by-event relative to the azimuthal direction of the charged trigger particle, which is the reconstructed particle with the largest transverse momentum (ptrigT) in the range 8<ptrigT<15 GeV/c. The toward and away regions contain the primary and recoil jets, respectively; both regions are accompanied by the underlying event (UE). In contrast, the transverse region perpendicular to the direction of the trigger particle is dominated by the so-called UE dynamics, and includes also contributions from initial- and final-state radiation. The relative transverse activity classifier, RT=NTch/⟹NTch⟩, is used to group events according to their UE activity, where NTch is the charged-particle multiplicity per event in the transverse region and ⟹NTch⟩ is the mean value over the whole analysed sample. The energy dependence of the RT distributions in pp collisions at s√=2.76, 5.02, 7, and 13 TeV is reported, exploring the Koba-Nielsen-Olesen (KNO) scaling properties of the multiplicity distributions. The first measurements of charged-particle pT spectra as a function of RT in the three azimuthal regions in pp, p−Pb, and Pb−Pb collisions at sNN−−−√=5.02 TeV are also reported. Data are compared with predictions obtained from the event generators PYTHIA 8 and EPOS LHC. This set of measurements is expected to contribute to the understanding of the origin of collective-like effects in small collision systems (pp and p−Pb)

    Charm production and fragmentation fractions at midrapidity in pp collisions at √s = 13 TeV

    No full text
    Measurements of the production cross sections of prompt D0, D+, D∗+, D+s, Λ+c, and Ξ+c charm hadrons at midrapidity in proton−proton collisions at s√=13 TeV with the ALICE detector are presented. The D-meson cross sections as a function of transverse momentum (pT) are provided with improved precision and granularity. The ratios of pT-differential meson production cross sections based on this publication and on measurements at different rapidity and collision energy provide a constraint on gluon parton distribution functions at low values of Bjorken-x (10−5−10−4). The measurements of Λ+c (Ξ+c) baryon production extend the measured pT intervals down to pT=0(3)~GeV/c. These measurements are used to determine the charm-quark fragmentation fractions and the cc¯¯ production cross section at midrapidity (|y|<0.5) based on the sum of the cross sections of the weakly-decaying ground-state charm hadrons D0, D+, D+s, Λ+c, Ξ0c and, for the first time, Ξ+c, and of the strongly-decaying J/psi mesons. The first measurements of Ξ+c and Σ0,++c fragmentation fractions at midrapidity are also reported. A significantly larger fraction of charm quarks hadronising to baryons is found compared to e+e− and ep collisions. The cc¯¯ production cross section at midrapidity is found to be at the upper bound of state-of-the-art perturbative QCD calculations

    Investigating the nature of the K∗0(700) state with π±K0S correlations at the LHC

    No full text
    The first measurements of femtoscopic correlations with the particle pair combinations π±K0S in pp collisions at s√=13 TeV at the Large Hadron Collider (LHC) are reported by the ALICE experiment. Using the femtoscopic approach, it is shown that it is possible to study the elusive K∗0(700) particle that has been considered a tetraquark candidate for over forty years. Boson source parameters and final-state interaction parameters are extracted by fitting a model assuming a Gaussian source to the experimentally measured two-particle correlation functions. The final-state interaction is modeled through a resonant scattering amplitude, defined in terms of a mass and a coupling parameter, decaying into a π±K0S pair. The extracted mass and Breit-Wigner width, derived from the coupling parameter, of the final-state interaction are found to be consistent with previous measurements of the K∗0(700). The small value and increasing behavior of the correlation strength with increasing source size support the hypothesis that the K∗0(700) is a four-quark state, i.e. a tetraquark state. This latter trend is also confirmed via a simple geometric model that assumes a tetraquark structure of the K∗0(700) resonance

    Publisher Correction: Unveiling the strong interaction among hadrons at the LHC

    No full text
    Correction to: Nature https://doi.org/10.1038/s41586-020-3001-6Published online 09 December 2020 In Fig. 1c of this Article, owing to an error during the production process, the equation incorrectly began ‘C(k*, r*) = 
’ instead of ‘C(k*) = 
’. In addition, in affiliation 71 ‘Dipartimento di Fisica dell’Università degli studi di Bari Aldo Moro’ has been corrected to read ‘Dipartimento di Fisica dell’Università degli studi di Cagliari’. The original Article has been corrected online

    Measurement of isolated photon–hadron correlations in √sNN = 5.02 TeV pp and p–Pb collisions

    No full text
    This paper presents isolated photon-hadron correlations using pp and p-Pb data collected by the ALICE detector at the LHC. For photons with |η| < 0.67 and 12 < pT < 40 GeV/c, the associated yield of charged particles in the range |η| < 0.80 and 0.5 < pT < 10 GeV/c is presented. These momenta are much lower than previous measurements at the LHC. No significant difference between pp and p-Pb is observed, with PYTHIA 8.2 describing both data sets within uncertainties. This measurement constrains nuclear effects on the parton fragmentation in p-Pb collisions, and provides a benchmark for future studies of Pb-Pb collisions

    Elliptic flow of electrons from beauty-hadron decays in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The elliptic flow of electrons from beauty hadron decays at midrapidity (|y| < 0.8) is measured in Pb-Pb collisions at sNN−−−√ = 5.02 TeV with the ALICE detector at the LHC. The azimuthal distribution of the particles produced in the collisions can be parameterized with a Fourier expansion, in which the second harmonic coefficient represents the elliptic flow, v2. The v2 coefficient is measured for the first time in transverse momentum (pT) range 1.3-6 GeV/c in the centrality class 30-50%. The measurement of electrons from beauty-hadron decays exploits their larger mean proper decay length cτ≈ 500 ÎŒm compared to that of charm hadrons and most of the other background sources. The v2 of electrons from beauty hadron decays at midrapidity is found to be positive with a significance of 3.75σ. The results provide insights on the degree of thermalization of beauty quarks in the medium. A model assuming full thermalization of beauty quarks is strongly disfavoured by the measurement at high pT, but is in agreement with the results at low pT. Transport models including substantial interactions of beauty quarks with an expanding strongly-interacting medium describe the measurement
    • 

    corecore