458 research outputs found

    Gestión y Distribución de Aplicaciones en Grandes Organizaciones

    Get PDF
    This thesis describes first the general state of the art in Software Management and Distribution in large Organisations, entering then the specifics of CERN and its software management and distribution method for UNIX/Linux-based systems called ASIS. The advantages and shortcomings of ASIS in its state before 1997 are explained in detail. The redesign and rewrite of the ASIS software framework and its tools, for which the author spent 12 months at CERN, is the core part of the thesis. The main functionality enhancements include the design and implementation of a transaction-based system for validating changes to the ASIS software repository, and its fail-safe replication on local and remote sites. The new framework and these tools are currently in production at CERN and many other institutes

    Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit

    Full text link
    A comprehensive investigation of the frequency-noise spectral density of a free-running mid-infrared quantum-cascade laser is presented for the first time. It provides direct evidence of the leveling of this noise down to a white noise plateau, corresponding to an intrinsic linewidth of a few hundred Hz. The experiment is in agreement with the most recent theory on the fundamental mechanism of line broadening in quantum-cascade lasers, which provides a new insight into the Schawlow-Townes formula and predicts a narrowing beyond the limit set by the radiative lifetime of the upper level.Comment: 4 pages, 4 figure

    Frequency metrology of helium around 1083 nm and determination of the nuclear charge radius

    Full text link
    We measure the absolute frequency of seven out of the nine allowed transitions between the 23^3{\it S} and 23^3{\it P} hyperfine manifolds in a metastable 3^3He beam by using an optical frequency comb synthesizer-assisted spectrometer. The relative uncertainty of our measurements ranges from 1×10111\times 10^{-11} to 5×10125\times 10^{-12}, which is, to our knowledge, the most precise result for any optical 3^3He transition to date. The resulting 232^3{\it P}-23^3{\it S} centroid frequency is 276702827204.8(2.4)276\,702\,827\,204.8\,(2.4)kHz. Comparing this value with the known result for the 4^4He centroid and performing {\em ab initio} QED calculations of the 4^4He-3^3He isotope shift, we extract the difference of the squared nuclear charge radii δr2\delta r^2 of 3^3He and 4^4He. Our result for δr2=1.074(3)\delta r^2=1.074 (3) fm2^2 disagrees by about 4σ4\,\sigma with the recent determination [R. van Rooij {\em et al.}, Science {\bf 333}, 196 (2011)].Comment: 4 pages, 3 figures, 3 table

    A Laser System for the Spectroscopy of Highly-Charged Bismuth Ions

    Full text link
    We present and characterize a laser system for the spectroscopy on highly-charged ^209Bi^82+ ions at a wavelength of 243.87 nm. For absolute frequency stabilization, the laser system is locked to a near-infra-red laser stabilized to a rubidium transition line using a transfer cavity based locking scheme. Tuning of the output frequency with high precision is achieved via a tunable rf offset lock. A sample-and-hold technique gives an extended tuning range of several THz in the UV. This scheme is universally applicable to the stabilization of laser systems at wavelengths not directly accessible to atomic or molecular resonances. We determine the frequency accuracy of the laser system using Doppler-free absorption spectroscopy of Te_2 vapour at 488 nm. Scaled to the target wavelength of 244 nm, we achieve a frequency uncertainty of \sigma_{244nm} = 6.14 MHz (one standard deviation) over six days of operation.Comment: Contribution to the special issue on "Trapped Ions" in "Applied Physics B

    Quattor: Tools and Techniques for the Configuration, Installation and Management of Large-Scale Grid Computing Fabrics

    Get PDF
    This paper describes the quattor tool suite, a new system for the installation, configuration, and management of operating systems and application software for computing fabrics. At present Unix derivatives such as Linux and Solaris are supported. Quattor is a powerful, portable and modular open source solution that has been shown to scale to thousands of computing nodes and offers a significant reduction in management costs for large computing fabrics. The quattor tool suite includes innovations compared to existing solutions which make it very useful for computing fabrics integrated into grid environments. Evaluations of the tool suite in current large scale computing environments are presented

    Comb-assisted mercury spectroscopy in the deep-ultraviolet: towards the development of a new primary thermometer

    Get PDF
    We report on the development of a new primary thermometer based upon high-precision spectroscopy of mercury vapors in the deep-ultraviolet region for the practical realization of the new kelvin. The line profile of the (6s2)1S0 > (6s6p)3P1 intercombination transition of the 200Hg bosonic isotope is observed with a high spectral fidelity using a coherent radiation source at 253.7 nm. This latter consists of a near-IR external cavity diode laser followed by a double-stage second-harmonic generation apparatus. Metrology grade UV spectroscopy is demonstrated by locking the diode laser to a self-referenced optical frequency comb synthesizer

    Comparative study of density functional theories of the exchange-correlation hole and energy in silicon

    Full text link
    We present a detailed study of the exchange-correlation hole and exchange-correlation energy per particle in the Si crystal as calculated by the Variational Monte Carlo method and predicted by various density functional models. Nonlocal density averaging methods prove to be successful in correcting severe errors in the local density approximation (LDA) at low densities where the density changes dramatically over the correlation length of the LDA hole, but fail to provide systematic improvements at higher densities where the effects of density inhomogeneity are more subtle. Exchange and correlation considered separately show a sensitivity to the nonlocal semiconductor crystal environment, particularly within the Si bond, which is not predicted by the nonlocal approaches based on density averaging. The exchange hole is well described by a bonding orbital picture, while the correlation hole has a significant component due to the polarization of the nearby bonds, which partially screens out the anisotropy in the exchange hole.Comment: 16 pages, 5 figures, RevTeX, added conten
    corecore