35 research outputs found

    Age-related influences on somatic and physical fitness of elite police agents (Influencias de la edad en la aptitud física y somática de los agentes de policía de élite)

    Get PDF
    Background: Elite police officers must be physically fit to perform their job occupational demands but information on the effect of age in their physical fitness and somatic composition is scarce. Our aim is to describe the effect of age on somatic and physical fitness of a Special Police Unit (SPU); and to understand age-related changes. Methods: 117 SPU elements of a total of 218, aged 42.6±4.2 years, were assessed on their somatic (height, weight, circumferences, skinfolds); body composition (BMI, body fat); and physical fitness (maximal, power and endurance strength, aerobic power, and flexibility). T-tests were used for comparing results to other police studies. Regression analysis was used to detect the effect of age for somatic and fitness variable. Results: SPU elements showed a homogeneous and suitable fitness condition. No somatic differences were found along age, but annual age losses were found for physical fitness, namely for strength: left handgrip strength (95%CI -0.70 to -0.12), bench press (95%CI -2.34 to -0.89), squat jump (95%CI -0.70 to -0.12), medicinal ball throw (95%CI -0.62 to -0.25), push-ups (95%CI -1.64 to -0.66), pull-ups (95%CI -0.53 to -0.11), sit-ups (95%CI -1.33 to -0.27), but also on the VO2max (-0.535 to -0.115). Conclusions: Portuguese SPU elements showed a good somatic and physical fitness condition according to the requirements of their profession. Regardless the effect of age they were able to maintain a good somatic fitness and a very good aerobic power along the years. The loss of strength was the most associated with age.4811-99FE-2ECD | Luis Paulo RodriguesN/

    Effect of instability and bodyweight neuromuscular training on dynamic balance control in active young adults

    Get PDF
    The aims of this study were to analyse the effects of unstable and stable bodyweight neuromuscular training on dynamic balance control and to analyse the between-group differences after the training period. Seventy-seven physically active young adults (48 males, 29 females, 19.1 ? 1.1 years, 170.2 ? 9.2 cm, 64.1 ? 10.7 kg) were distributed into an unstable training group (UTG), a stable training group (STG), and a control group (CG). Training was conducted three times a week for nine weeks. Pre-intervention and post-intervention measures included dynamic balance control using a Y Balance Test (YBT), anterior (A), posteromedial (PM), and posterolateral (PL) reach direction. A mixed ANOVA was executed to test the within-subjects factor and the between-subjects factor. Statistically significant differences were found for all YBT measures within groups (p = 0.01) and between groups (p = 0.01). After the intervention, UTG and STG presented meaningfully improved results in all YBT measures (A: 7%, p = 0.01; 4%, p = 0.02, PM: 8%, p = 0.01; 5%, p = 0.01, PL: 8%, p = 0.01; 4%, p = 0.04, respectively). No statistical changes were found for any of the measures in the CG. After the intervention, significant differences were observed between the UTG and CG for the YBTA and PM (p = 0.03; p = 0.01). The results suggest that neuromuscular training using an unstable surface had similar effects on dynamic balance control as training using a stable surface. When compared to CG, UTG showed better performance in YBTA and PM.D915-7373-ED16 | Cesar LeaoN/

    Data on the evaluation of FGF2 gene expression in Colorectal Cancer

    Get PDF
    The data presented in this article is related with the research paper entitled "Evaluation of MGP gene expression in colorectal cancer", available on Gene journal [1]. From all the transcription factors known to regulate MGP, FGF2 is the most described in colon adenocarcinoma and colon tumor cell lines, where it was shown to: i) contribute for the invasiveness potential; and ii) promote proliferation and survival of colorectal cancer cells. These in vitro studies pose the hypothesis that FGF2 associated signaling pathways could be promoting the regulation of others genes, such as MGP, that may lead to tumor progression which ultimately could result in poor prognosis in colon adenocarcinoma.UID/Multi/04326/2019/ SFRH/BPD/111898/2015 / SFRH/BPD/111289/2015 / PD/BD/128341/2017, PD/BD/128341/2017info:eu-repo/semantics/publishedVersio

    Analysis of variants in the HCN4 gene and in three single nucleotide polymorphisms of the CYP3A4 gene for association with ivabradine reduction in heart rate: A preliminary report

    Get PDF
    Background: Ivabradine, a selective bradycardic drug, inhibits the If. In patients with heart failure (HF), ivabradine reduces the risk of rehospitalization and mortality. The average heart rate (HR) reduction is 8–10 beats, although clinical trials reveal interindividual variability. The aim of the study is to identify variants associated with HR reduction produced by ivabradine in genes involved in the drug metabolism (CYP3A4) or related to the drug target (HCN4). Methods: In an exploratory cohort (n = 11), patients started on ivabradine were genotyped and the HR reduction was studied. Results: The mean HR reduction after the treatment was 18.10 ± 12.26 bpm. The HR reduction was ≥ 15 bpm in 3 patients and > 5 and < 15 bpm in 7 patients. Four synonymous variants, L12L, L520L, P852P, and P1200P, were detected in the HCN4 gene (frequency = 0.045, 0.045, and 0.681, respectively). Moreover, the CYP3A4*1F and CYP3A4*1B were found in one patient each and CYP3A4*1G was presented in 3 patients. Conclusions: This is the first study using an exploratory pharmacogenetic approach that attempts to explain interindividual variability in ivabradine HR reduction. However, more research must be undertaken in order to determine the role of variants in HCN4 and CYP3A4 genes in response to ivabradine

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin
    corecore