11 research outputs found

    Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity.

    Get PDF
    This opinion piece presents an approach to standardisation of an important aspect of Chagas disease drug discovery and development: selecting Trypanosoma cruzi strains for in vitro screening. We discuss the rationale for strain selection representing T. cruzi diversity and provide recommendations on the preferred parasite stage for drug discovery, T. cruzi discrete typing units to include in the panel of strains and the number of strains/clones for primary screens and lead compounds. We also consider experimental approaches for in vitro drug assays. The Figure illustrates the current Chagas disease drug-discovery and development landscape

    Nitroheterocyclic drugs cure experimental <i>Trypanosoma cruzi</i> infections more effectively in the chronic stage than in the acute stage

    Get PDF
    The insect-transmitted protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, and infects 5-8 million people in Latin America. Chagas disease is characterised by an acute phase, which is partially resolved by the immune system, but then develops as a chronic life-long infection. There is a consensus that the front-line drugs benznidazole and nifurtimox are more effective against the acute stage in both clinical and experimental settings. However, confirmative studies have been restricted by difficulties in demonstrating sterile parasitological cure. Here, we describe a systematic study of nitroheterocyclic drug efficacy using highly sensitive bioluminescence imaging of murine infections. Unexpectedly, we find both drugs are more effective at curing chronic infections, judged by treatment duration and therapeutic dose. This was not associated with factors that differentially influence plasma drug concentrations in the two disease stages. We also observed that fexinidazole and fexinidazole sulfone are more effective than benznidazole and nifurtimox as curative treatments, particularly for acute stage infections, most likely as a result of the higher and more prolonged exposure of the sulfone derivative. If these findings are translatable to human patients, they will have important implications for treatment strategies

    Knockout of the dhfr-ts Gene in Trypanosoma cruzi Generates Attenuated Parasites Able to Confer Protection against a Virulent Challenge

    Get PDF
    Chagas disease is the clinical manifestation of the infection produced by the flagellate parasite Trypanosoma cruzi and currently there is no vaccine to prevent this disease. Therefore, different approaches or alternatives are urgently needed. Vaccination with live attenuated parasites has been used effectively in mice to reduce parasitemia and histological damage. However, the use of live parasites as inmunogens is controversial due to the risk of reversion to a virulent phenotype. In this work we genetically manipulated a naturally attenuated strain of T. cruzi in order to produce parasites with impaired replication and infectivity, using the mutation as a safety device against reversion to virulence. We show that genetically modified parasites display a lower proliferation rate in vitro and induced almost undetectable levels of T. cruzi specific CD8+ T cells when injected in mice. Furthermore, the immune response induced by these live mutant parasites confers protection against a subsequent virulent infection even a year after the original immunization

    Anti-trypanosomatid drug discovery:an ongoing challenge and a continuing need

    Get PDF

    Biomarkers of therapeutic responses in chronic Chagas disease: state of the art and future perspectives

    Get PDF
    The definition of a biomarker provided by the World Health Organization is any substance, structure, or process that can be measured in the body, or its products and influence, or predict the incidence or outcome of disease. Currently, the lack of prognosis and progression markers for chronic Chagas disease has posed limitations for testing new drugs to treat this neglected disease. Several molecules and techniques to detect biomarkers in Trypanosoma cruzi-infected patients have been proposed to assess whether specific treatment with benznidazole or nifurtimox is effective. Isolated proteins or protein groups from different T. cruzi stages and parasite-derived glycoproteins and synthetic neoglycoconjugates have been demonstrated to be useful for this purpose, as have nucleic acid amplification techniques. The amplification of T. cruzi DNA using the real-time polymerase chain reaction method is the leading test for assessing responses to treatment in a short period of time. Biochemical biomarkers have been tested early after specific treatment. Cytokines and surface markers represent promising molecules for the characterisation of host cellular responses, but need to be further assessed.RICET RD12/0018/0010. RICET RD12/0018/0021. AGAUR 2014SGR26. Plan Nacional de I+D+I SAF2012-35777. Plan Nacional de I+D+I SAF2013-48527-R. NIMHD/NIH 2G12MD007592. Financial support: CRESIB and IPBLN research members were partially supported by the RICET (RD12/0018/0010, RD12/0018/0021), M-JP and JG received research funds from AGAUR (2014SGR26) and Fundación Mundo Sano, M-CT and M-CL were supported by Plan Nacional de I+D+I (MINECO-Spain) (SAF2012-35777, SAF2013-48527-R and FEDER), ICA was partially supported by NIMHD/NIH (2G12MD007592). Financial support: CRESIB and IPBLN research members were partially supported by the RICET (RD12/0018/0010, RD12/0018/0021), M-JP and JG received research funds from AGAUR (2014SGR26) and Fundación Mundo Sano, M-CT and M-CL were supported by Plan Nacional de I+D+I (MINECO-Spain) (SAF2012-35777, SAF2013-48527-R and FEDER), ICA was partially supported by NIMHD/NIH (2G12MD007592).Peer reviewe
    corecore