317 research outputs found

    Production of the Superconducting Matching Quadrupoles for the LHC Insertions

    Get PDF
    The LHC insertions are equipped with individually powered superconducting quadrupole assemblies comprising several quadrupole magnets and orbit correctors, and range in length from 5.3 m to 11.3 m. Following the initial experience in the assembly of the pre-series cold masses, the production has advanced well and about half of the total of 82 units has been produced at CERN. In this paper we present the experience gained in steering the cold mass production, in particular with respect to the alignment requirements. We also report on the field quality and other measurements made for assuring the quality of the quadrupoles

    The Construction of the Superconducting Matching Quadrupoles for the LHC Insertions

    Get PDF
    After several years of effort, the construction of the superconducting matching quadrupoles for the LHC insertions is nearing completion. We retrace the main events of the project from the initial development of the quadrupole magnets of several types to the series production of over 100 complex superconducting magnets, and report on the techniques developed for steering of the production. The main performance parameters for the full series, such as quench training, field quality and magnet geometry are presented. The experience gained in the production of these special superconducting magnets is of considerable value for further development of the LHC insertions

    Terahertz emission mechanism and laser excitation position dependence of nano-grating electrode photomixers

    Get PDF
    The emission mechanism of continuous wave (CW) terahertz (THz) photomixers that make use of nanostructured gratings (NSGs) is studied. Two different photomixer designs, based on a single-sided NSG and a double-sided NSG, embedded in the same antenna design and fabricated on an Fe doped InGaAsP substrate, are characterized with ∼1550 nm excitation. They are shown to exhibit similar performance in terms of spectral bandwidth and emitted power. The emission is mapped in terms of the laser excitation position, from which the emission mechanism is assigned to an enhanced optical electric field at the tips of the NSGs

    Divisible E-Cash from Constrained Pseudo-Random Functions

    Get PDF
    International audienceElectronic cash (e-cash) is the digital analogue of regular cash which aims at preservingusers’ privacy. Following Chaum’s seminal work, several new features were proposed for e-cash toaddress the practical issues of the original primitive. Among them,divisibilityhas proved very usefulto enable efficient storage and spendings. Unfortunately, it is also very difficult to achieve and, todate, quite a few constructions exist, all of them relying on complex mechanisms that can only beinstantiated in one specific setting. In addition security models are incomplete and proofs sometimeshand-wavy.In this work, we first provide a complete security model for divisible e-cash, and we study the linkswith constrained pseudo-random functions (PRFs), a primitive recently formalized by Boneh andWaters. We exhibit two frameworks of divisible e-cash systems from constrained PRFs achievingsome specific properties: either key homomorphism or delegability. We then formally prove theseframeworks, and address two main issues in previous constructions: two essential security notionswere either not considered at all or not fully proven. Indeed, we introduce the notion ofclearing,which should guarantee that only the recipient of a transaction should be able to do the deposit,and we show theexculpability, that should prevent an honest user to be falsely accused, was wrongin most proofs of the previous constructions. Some can easily be repaired, but this is not the casefor most complex settings such as constructions in the standard model. Consequently, we providethe first construction secure in the standard model, as a direct instantiation of our framework

    A Provably-Secure Unidirectional Proxy Re-Encryption Scheme Without Pairing in the Random Oracle Model

    Get PDF
    Proxy re-encryption (PRE) enables delegation of decryption rights by entrusting a proxy server with special information, that allows it to transform a ciphertext under one public key into a ciphertext of the same message under a different public key. It is important to note that, the proxy which performs the re-encryption learns nothing about the message encrypted under either public keys. Due to its transformation property, proxy re-encryption schemes have practical applications in distributed storage, encrypted email forwarding, Digital Rights Management (DRM) and cloud storage. From its introduction, several proxy re-encryption schemes have been proposed in the literature, and a majority of them have been realized using bilinear pairing. In Africacrypt 2010, the first PKI-based collusion resistant CCA secure PRE scheme without pairing was proposed in the random oracle model. In this paper, we point out an important weakness in the scheme. We also present the first collusion-resistant pairing-free unidirectional proxy re-encryption scheme which meets CCA security under a variant of the computational Diffie-Hellman hardness assumption in the random oracle model

    Crystal structure of the RNA polymerase domain of the West Nile Virus non-structural protein 5

    Get PDF
    Viruses of the family Flaviviridae are important human and animal pathogens. Among them, the Flaviviruses dengue ( DENV) and West Nile ( WNV) cause regular outbreaks with fatal outcomes. The RNA-dependent RNA polymerase ( RdRp) activity of the non-structural protein 5 ( NS5) is a key activity for viral RNA replication. In this study, crystal structures of enzymatically active and inactive WNV RdRp domains were determined at 3.0- and 2.35-angstrom resolution, respectively. The determined structures were shown to be mostly similar to the RdRps of the Flaviviridae members hepatitis C and bovine viral diarrhea virus, although with unique elements characteristic for the WNVRdRp. Using a reverse genetic system, residues involved in putative interactions between the RNA-cap methyltransferase ( MTase) and the RdRp domain of Flavivirus NS5 were identified. This allowed us to propose a model for the structure of the full-length WNV NS5 by in silico docking of the WNV MTase domain ( modeled from our previously determined structure of the DENV MTase domain) onto the RdRp domain. The Flavivirus RdRp domain structure determined here should facilitate both the design of anti-Flavivirus drugs and structure-function studies of the Flavivirus replication complex in which the multifunctional NS5 protein plays a central role

    The Hexamer Structure of the Rift Valley Fever Virus Nucleoprotein Suggests a Mechanism for its Assembly into Ribonucleoprotein Complexes

    Get PDF
    Rift Valley fever virus (RVFV), a Phlebovirus with a genome consisting of three single-stranded RNA segments, is spread by infected mosquitoes and causes large viral outbreaks in Africa. RVFV encodes a nucleoprotein (N) that encapsidates the viral RNA. The N protein is the major component of the ribonucleoprotein complex and is also required for genomic RNA replication and transcription by the viral polymerase. Here we present the 1.6 Å crystal structure of the RVFV N protein in hexameric form. The ring-shaped hexamers form a functional RNA binding site, as assessed by mutagenesis experiments. Electron microscopy (EM) demonstrates that N in complex with RNA also forms rings in solution, and a single-particle EM reconstruction of a hexameric N-RNA complex is consistent with the crystallographic N hexamers. The ring-like organization of the hexamers in the crystal is stabilized by circular interactions of the N terminus of RVFV N, which forms an extended arm that binds to a hydrophobic pocket in the core domain of an adjacent subunit. The conformation of the N-terminal arm differs from that seen in a previous crystal structure of RVFV, in which it was bound to the hydrophobic pocket in its own core domain. The switch from an intra- to an inter-molecular interaction mode of the N-terminal arm may be a general principle that underlies multimerization and RNA encapsidation by N proteins from Bunyaviridae. Furthermore, slight structural adjustments of the N-terminal arm would allow RVFV N to form smaller or larger ring-shaped oligomers and potentially even a multimer with a super-helical subunit arrangement. Thus, the interaction mode between subunits seen in the crystal structure would allow the formation of filamentous ribonucleocapsids in vivo. Both the RNA binding cleft and the multimerization site of the N protein are promising targets for the development of antiviral drugs

    Transferable Constant-Size Fair E-Cash

    Get PDF
    International audienceWe propose a new blind certification protocol that provides interesting properties while remaining efficient. It falls in the Groth-Sahai framework for witness-indistinguishable proofs, thus extended to a certified signature it immediately yields non-frameable group signatures. We then use it to build an efficient (offline) e-cash system that guarantees user anonymity and transferability of coins without increasing their size. As required for fair e-cash, in case of fraud, anonymity can be revoked by an authority, which is also crucial to deter from double spending
    corecore