70 research outputs found

    A 'feasibility space' as a goal to be achieved in the development of new technologies for converting renewable energies

    Get PDF
    This method article proposes the establishment of a feasibility space as an objective to be achieved during the development of new technologies to convert energy from renewable resources. The feasibility space can also be a reference when designing an energy system based on renewable resources. The feasibility space is a set of parameter values for the design stage that define the economic and technical feasibility of an energy system or a new technology, which must be satisfied when the energy system comes into operation or when the new technology for converting power goes into operation. The study of possible feasibility spaces allows characterizing energy systems or new technologies as attractive investments, or on the other hand, as unfeasible ventures

    Global atlas of solar and wind resources temporal complementarity

    Get PDF
    The concept of renewable energy sources complementarity has attracted the attention of researchers across the globe over recent years. Studies have been published regularly with focuses on aspects such as new metrics for complementarity assessment, the optimal operation of hybrid power systems based on variable renewables, or mapping resources complementarity in a specific region. This study targets the present literature gap, namely a lack of complementarity study covering explicitly the whole World, based on the same data source and methodology. The research employs Kendall’s Tau correlation as the complementarity metric between global solar and wind resources and a pair of indicators such as the solar share and a sizing coefficient usually applied in the domain of hybrid generators. This method allows to conduct a preliminary estimation of a solar and wind energy hybrid generator based on a daily demand of 1 kWh. The data series employed in this study come from NASA’s POWER Project Program, covering the years 2001–2020. This work provides an interesting insight into the global variability of the complementarity between these two variable energy sources. Significant findings of this paper include that Kendall’s Tau ranges between –0.75 and 0.75, in line with previous research for specific regions, thus providing a theoretical maximum for planning. Additionally, the results suggest that in most tropical and subtropical areas, the hybrid solar-wind generator should be dominated by the solar portion to minimize the variability of the total daily energy produced

    Global atlas of solar and wind resources temporal complementarity

    Get PDF
    The concept of renewable energy sources complementarity has attracted the attention of researchers across the globe over recent years. Studies have been published regularly with focuses on aspects such as new metrics for complementarity assessment, the optimal operation of hybrid power systems based on variable renewables, or mapping resources complementarity in a specific region. This study targets the present literature gap, namely a lack of complementarity study covering explicitly the whole World, based on the same data source and methodology. The research employs Kendall's Tau correlation as the complementarity metric between global solar and wind resources and a pair of indicators such as the solar share and a sizing coefficient usually applied in the domain of hybrid generators. This method allows to conduct a preliminary estimation of a solar and wind energy hybrid generator based on a daily demand of 1 kWh. The data series employed in this study come from NASA’s POWER Project Program, covering the years 2001–2020. This work provides an interesting insight into the global variability of the complementarity between these two variable energy sources. Significant findings of this paper include that Kendall’s Tau ranges between –0.75 and 0.75, in line with previous research for specific regions, thus providing a theoretical maximum for planning. Additionally, the results suggest that in most tropical and subtropical areas, the hybrid solar-wind generator should be dominated by the solar portion to minimize the variability of the total daily energy produced

    Simplified evaluation of energetic complementarity based on monthly average data

    Get PDF
    Energetic complementarity is a subject that has been holding more and more attention from researchers in recent years, being a concept that can be applied both in energy planning stages and in phases of operation of energy systems based on renewable energy resources. The complementarity between two renewable sources of energy has three components: time-complementarity, energy-complementarity and amplitude-complementarity, and can be determined between raw energy availabilities or between energy generated by power plants. Complementarity can be evaluated between two renewable resources in the same place or between two renewable resources in different places and these two types can be denominated respectively as temporal and spatial complementarity. This method allows simplified evaluation of the energy complementarity between two renewable resources by comparing basic parameters obtained from series of monthly average values that characterize these resources. Finally, an application example clarifies the application of the method

    A ’feasibility space’ as a goal to be achieved in the development of new technologies for converting renewable energies

    Get PDF
    This method article proposes the establishment of a feasibility space as an objective to be achieved during the development of new technologies to convert energy from renewable resources. The feasibility space can also be a reference when designing an energy system based on renewable resources. The feasibility space is a set of parameter values for the design stage that define the economic and technical feasibility of an energy system or a new technology, which must be satisfied when the energy system comes into operation or when the new technology for converting power goes into operation. The study of possible feasibility spaces allows characterizing energy systems or new technologies as attractive investments, or on the other hand, as unfeasible ventures. - The method proposes to establish a goal to achieve during the development of technologies for energy conversion. - The method provides a benchmark for both the stages of design and development of generation systems and new technologies. - The feasibility space constitutes a planning tool for power systems based on renewable resources of any size

    An integrative dynamic model of Colombian population distribution, based on the maximum entropy principle and matter, energy, and information flow

    Get PDF
    Human society has increased its capacity to exploit natural resources thanks to new technologies, which are one of the results of information exchange in the knowledge society. Many approaches to understanding the interactions between human society and natural systems have been developed in the last decades, and some have included considerations about information. However, none of them has considered information as an active variable or flowing entity in the human–natural/social-ecological system, or, moreover, even as a driving force of their interactions. This paper explores these interactions in socio-ecological systems by briefly introducing a conceptual frame focused on the exchange of information, matter, and energy. The human population is presented as a convergence variable of these three physical entities, and a population distribution model for Colombia is developed based on the maximum entropy principle to integrate the balances of related variables as macro-state restrictions. The selected variables were electrical consumption, water demand, and higher education rates (energy, matter, and information). The final model includes statistical moments for previous population distributions. It is shown how population distribution can be predicted yearly by combining these variables, allowing future dynamics exploration. The implications of this model can contribute to bridging information sciences and sustainability studies

    River Model Calibration Based on Design of Experiments Theory. A Case Study: Meta River, Colombia

    Get PDF
    Numerical models are important tools for analyzing and solving water resources problems; however, a model’s reliability heavily depends on its calibration. This paper presents a method based on Design of Experiments theory for calibrating numerical models of rivers by considering the interaction between different calibration parameters, identifying the most sensitive parameters and finding a value or a range of values for which the calibration parameters produces an adequate performance of the model in terms of accuracy. The method consists of a systematic process for assessing the qualitative and quantitative performance of a hydromorphological numeric model. A 75 km reach of the Meta River, in Colombia, was used as case study for validating the method. The modeling was conducted by using the software package MIKE-21C, a two-dimensional flow model. The calibration is assessed by means of an Overall Weighted Indicator, based on the coefficient of determination of the calibration parameters and within a range from 0 to 1. For the case study, the most significant calibration parameters were the sediment transport equation, the riverbed load factor and the suspended load factor. The optimal calibration produced an Overall Weighted Indicator equal to 0.857. The method can be applied to any type of morphological models
    corecore