1,722 research outputs found

    Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission

    Full text link
    We have studied terahertz (THz) emission from arsenic-ion implanted GaAs both experimentally and using a three-dimensional carrier dynamics simulation. A uniform density of vacancies was formed over the optical absorption depth of bulk GaAs samples by performing multi-energy implantations of arsenic ions (1 and 2.4MeV) and subsequent thermal annealing. In a series of THz emission experiments the frequency of peak THz power was found to increase significantly from 1.4 to 2.2THz when the ion implantation dose was increased from 10^13 to 10^16 cm-3. We used a semi-classical Monte-Carlo simulation of ultra-fast carrier dynamics to reproduce and explain these results. The effect of the ion-induced damage was included in the simulation by considering carrier scattering at neutral and charged impurities, as well as carrier trapping at defect sites. Higher vacancy concentrations and shorter carrier trapping times both contributed to shorter simulated THz pulses, the latter being more important over experimentally realistic parameter ranges.Comment: 6 pages, 7 figure

    Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches

    Full text link
    A semi-classical Monte Carlo model for studying three-dimensional carrier dynamics in photoconductive switches is presented. The model was used to simulate the process of photoexcitation in GaAs-based photoconductive antennas illuminated with pulses typical of mode-locked Ti:Sapphire lasers. We analyzed the power and frequency bandwidth of THz radiation emitted from these devices as a function of bias voltage, pump pulse duration and pump pulse location. We show that the mechanisms limiting the THz power emitted from photoconductive switches fall into two regimes: when illuminated with short duration (<40 fs) laser pulses the energy distribution of the Gaussian pulses constrains the emitted power, while for long (>40 fs) pulses, screening is the primary power-limiting mechanism. A discussion of the dynamics of bias field screening in the gap region is presented. The emitted terahertz power was found to be enhanced when the exciting laser pulse was in close proximity to the anode of the photoconductive emitter, in agreement with experimental results. We show that this enhancement arises from the electric field distribution within the emitter combined with a difference in the mobilities of electrons and holes.Comment: 7 pages, 7 figure

    Charge trapping in polymer transistors probed by terahertz spectroscopy and scanning probe potentiometry

    Full text link
    Terahertz time-domain spectroscopy and scanning probe potentiometry were used to investigate charge trapping in polymer field-effect transistors fabricated on a silicon gate. The hole density in the transistor channel was determined from the reduction in the transmitted terahertz radiation under an applied gate voltage. Prolonged device operation creates an exponential decay in the differential terahertz transmission, compatible with an increase in the density of trapped holes in the polymer channel. Taken in combination with scanning probe potentionmetry measurements, these results indicate that device degradation is largely a consequence of hole trapping, rather than of changes to the mobility of free holes in the polymer.Comment: 4 pages, 3 figure

    Polarisation-sensitive terahertz detection by multicontact photoconductive receivers

    Full text link
    We have developed a terahertz radiation detector that measures both the amplitude and polarization of the electric field as a function of time. The device is a three-contact photoconductive receiver designed so that two orthogonal electric-field components of an arbitrary polarized electromagnetic wave may be detected simultaneously. The detector was fabricated on Fe+ ion-implanted InP. Polarization-sensitive detection is demonstrated with an extinction ratio better than 100:1. This type of device will have immediate application in studies of birefringent and optically active materials in the far-infrared region of the spectrum.Comment: 3 pages, 3 figure

    Spectral fluctuations of Schr\"odinger operators generated by critical points of the potential

    Full text link
    Starting from the spectrum of Schr\"odinger operators on Rn\mathbb{R}^n, we propose a method to detect critical points of the potential. We argue semi-classically on the basis of a mathematically rigorous version of Gutzwiller's trace formula which expresses spectral statistics in term of classical orbits. A critical point of the potential with zero momentum is an equilibrium of the flow and generates certain singularities in the spectrum. Via sharp spectral estimates, this fluctuation indicates the presence of a critical point and allows to reconstruct partially the local shape of the potential. Some generalizations of this approach are also proposed.\medskip keywords : Semi-classical analysis; Schr\"odinger operators; Equilibriums in classical mechanics.Comment: 18 pages, Final versio

    Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs

    Full text link
    The carrier dynamics of photoexcited electrons in the vicinity of the surface of (NH4)2S-passivated GaAs were studied via terahertz (THz) emission spectroscopy and optical-pump THz-probe spectroscopy. THz emission spectroscopy measurements, coupled with Monte Carlo simulations of THz emission, revealed that the surface electric field of GaAs reverses after passivation. The conductivity of photoexcited electrons was determined via optical-pump THz-probe spectroscopy, and was found to double after passivation. These experiments demonstrate that passivation significantly reduces the surface state density and surface recombination velocity of GaAs. Finally, we have demonstrated that passivation leads to an enhancement in the power radiated by photoconductive switch THz emitters, thereby showing the important influence of surface chemistry on the performance of ultrafast THz photonic devices.Comment: 4 pages, 3 figures, to appear in Applied Physics Letter

    A semi-classical trace formula at a non-degenerate critical level

    Full text link
    We study the semi-classical trace formula at a critical energy level for a hh-pseudo-differential operator whose principal symbol has a unique non-degenerate critical point for that energy. This leads to the study of Hamiltonian systems near equilibrium and near the non-zero periods of the linearized flow. The contributions of these periods to the trace formula are expressed in terms of degenerate oscillatory integrals. The new results obtained are formulated in terms of the geometry of the energy surface and the classical dynamics on this surface.Comment: Repost of a paper published in 2004. 35 page

    Livestock abundance predicts vampire bat demography, immune profiles, and bacterial infection risk

    Get PDF
    Human activities create novel food resources that can alter wildlife–pathogen interactions. If resources amplify or dampen, pathogen transmission probably depends on both host ecology and pathogen biology, but studies that measure responses to provisioning across both scales are rare. We tested these relationships with a 4-year study of 369 common vampire bats across 10 sites in Peru and Belize that differ in the abundance of livestock, an important anthropogenic food source. We quantified innate and adaptive immunity from bats and assessed infection with two common bacteria. We predicted that abundant livestock could reduce starvation and foraging effort, allowing for greater investments in immunity. Bats from high-livestock sites had higher microbicidal activity and proportions of neutrophils but lower immunoglobulin G and proportions of lymphocytes, suggesting more investment in innate relative to adaptive immunity and either greater chronic stress or pathogen exposure. This relationship was most pronounced in reproductive bats, which were also more common in high-livestock sites, suggesting feedbacks between demographic correlates of provisioning and immunity. Infection with both Bartonella and haemoplasmas were correlated with similar immune profiles, and both pathogens tended to be less prevalent in high-livestock sites, although effects were weaker for haemoplasmas. These differing responses to provisioning might therefore reflect distinct transmission processes. Predicting how provisioning alters host–pathogen interactions requires considering how both within-host processes and transmission modes respond to resource shifts
    • …
    corecore