13 research outputs found

    Multidimensional procedure for mapping and monitoring urban energy vulnerability at regional level using public data: Proposal and implementation into a case study in Spain

    Get PDF
    Energy poverty is nowadays one of the biggest challenges to be tackled in the European Union, so identifying the number of households in a situation of energy vulnerability and taking the necessary measures to protect vulnerable and energy poor customers is considered to be essential. In this study, a simple methodology for identifying and monitoring energy vulnerable areas based on information available in public databases is presented. This paper brings to light the potential of existing public data for evaluating energy vulnerability, and the nature of these data also enables the evolution of vulnerability levels and the effect of potential measures implemented to be evaluated. The proposed method allows energy vulnerability to be mapped and diagnosed, at census section level, by means of a three-dimensional index that takes into account building features and energy expenses and two socio-economic indicators, giving rise to a vulnerability traffic-light. The method is then illustrated with the evaluation of the energy vulnerability of a region located in northern Spain (Greater Bilbao), where 13% of the census sections or 93,000 inhabitants reside (11% of the total population analysed), have been identified as suffering different levels of energy vulnerability. A geographical pattern has also been clearly recognised.The project leading to these results has received funding from “La Caixa” Foundation under the project code LCF/PR/SR20/52550013. The work has also been supported by the European Union's Interreg Sudoe Programme through the ARCAS project ‘New assessment Methodology for social, sustainable and eco-friendly housing. Climate architecture for the Sudoe's area’, project reference SOE3/P3/E0922. The authors would also like to acknowledge to the Department of Economic Development, Sustainability and Environment of the Basque Government, for making the access to the EPCs database easier

    Energy Colonialism: A Category to Analyse the Corporate Energy Transition in the Global South and North

    Get PDF
    Project TED2021-130035B-100MCIN/AEI/10.13039/ 501100011033European Union “NextGenerationEU”/PRTR

    Evaluation of the theoretical, technical and economic potential of industrial waste heat recovery in the Basque Country

    Get PDF
    Industrial waste heat recovery shows significant potential for increasing energy efficiency in industry. However, to design strategies that exploit this potential, it is necessary to have data about the quantity and characteristics of industrial waste heat flows. This information is not always readily available and many companies do not even have a systematic record of these energy flows. Hence, bottom-up methodologies to estimate that recovery potential by means of key transfer figures are useful tools within this field. In the present article, four different methods are applied to determine the industrial waste heat recovery potential in the Autonomous Community of the Basque Country (northern Spain), an energy-intensive industrial region with large energy dependency from the outside. Besides, the analysis of the economic viability of the industrial waste heat recovery is essential, because it determines the final adoption of energy efficiency measures. For that aim, the authors develop an easy-to-apply bottom-up methodology to carry out an assessment for the economic potential of the estimated industrial waste heat at different temperature levels. This method is applied to 129 companies, whose potentials are characterized and discussed. The obtained results show that, for waste heat streams above 400 ?C, more than 90% of the studied companies present payback periods below five years. For those industries with waste heat temperatures below 200 ?C, the ratio decreases to around 40%, still a noticeable value. The estimations show a significant opportunity to implement solutions to recover this wasted energy, especially in the iron and steel sector and the petrochemical industry. The development of public policies that encourage these measurements would be also beneficial.The authors would like to acknowledge the Spanish Ministry of Science and Innovation (MICINN) for funding through the SweetTES research project (RTI 2018099557BC22)

    Design and construction of a solar tracking system for Linear Fresnel Concentrator

    Get PDF
    An open circuit solar tracking system has been designed, manufactured, simulated and implemented for a handcrafted prototype of a small scale linear Fresnel reflector with a single axis of motion. The electronic control system is governed by an Arduino UNO R3 board and two main auxiliary systems; a Microstep Driver TB6600 and an RTC DS1302 module. Further, a mechanism was implemented that joins the reflectors to a stepper motor that executes a single movement per sequence, to move the set of reflector mirrors that make up the reflection system of the device. The positioning angles of the reflectors determined by the control algorithm models for solar tracking, allowed to feed the TONATIUH software to evaluate the path of the solar rays through the 3D modeling of the Linear Fresnel reflector on a real scale. The software was designed to follow the path of the sun by means of astronomical equations. In this way, the mirrors of the Linear Fresnel reflector can follow the solar path on a single axis from 7 am to 5 pm, making changes in the position of each element in 15-minute intervals. The percentage of position deviation of the reflectors does not exceed 1% between the location of the full-scale system mirrors and the position angles provided by the control algorithm. The efficiency of the implemented automatic solar tracking system increased by more than 50% compared to the manual tracking system

    European Cities in the Energy Transition: A Preliminary Analysis of 27 Cities

    Get PDF
    Nowadays, there is a wide scientific consensus about the unsustainability of the current energy system and at the same time, social awareness about climate change and the IPCC’s goals is increasing in Europe. Amongst the different pathways towards them, one alternative is the radical transition to a democratic low-carbon energy system where the local scale has a key leading role. Under this scope, this research is framed within the mPOWER project, financed by the European Commission’s H2020 programme, which promotes collaboration among different European municipalities in order to boost the transition to a renewable-based participatory energy system. This paper presents the starting point of the mPOWER project, where the main energy features of 27 selected European municipalities are collected and analysed for the year 2016. An open public tender and selection process was carried out among European cities in order to choose the candidates to participate in mPOWER project. A view of this situation will be taken by the mPOWER project as a diagnostic baseline for the following steps: a peer-to-peer knowledge-sharing process among these European municipalities, and subsequently, among a more extensive group. The first finding of the paper is that, even if those municipalities are trying to reduce their greenhouse gas emissions, they are highly dependent on fossil fuels, even in cases where renewable energies have significant presence. Second, their energy consumption is logarithmically related to the human development index and gross domestic product but not to the size of the cities and their climate characteristics. Finally, despite the work that these cities are making towards energy transition in general and within the mPOWER project in particular, the paper shows a high difficulty mapping their energy systems. The lack of accurate and unified data by the municipalities is a sign of disempowerment at a local and public level in the energy sphere and makes difficult any strategy to advance towards a bottom-up energy transition. Among other goals, the mPOWER project aims to reveal these kinds of difficulties and help local authorities in managing their transition paths.This research was funded by the European Union’s H2020 Research and Innovation programme under grant agreement 785171—mPOWER project. The research has been supported by ‘Ekopol: Iraunkortasunerako Bideak’ research group, recognised by the Basque Government (IT-1365-19) and the University of the Basque Country (GIC-18/22)

    Urban Energy Transitions in Europe, towards Low-Socio-Environmental Impact Cities

    Get PDF
    Achieving the ambitious targets set by Europe in its 2050 roadmap, moving away from fossil fuels towards renewable energy sources, while reducing carbon emissions, will require a radical change in Europe’s energy system. Much of the action that will enable this energy transition to be realised in a democratic way is at the local level. It is at this level that many of the decisions regarding the energy transition desired by European citizens will have to be taken. The methodology used in this study is based on data collection, literature review, data validation and analysis. A part of this analysis will also be taken by the mPower project as a diagnostic baseline. The first finding of this research work is that energy transition data availability at the local level is quite low. Second, the local authorities are experiencing difficulties in decarbonising their energy consumption. Finally, the factor with highest positive relationships with other energy transition variables is the number of people employed in the field of energy transition. The results suggest that in order to lead a participatory energy transition, the workforce specifically dedicated to energy transition is a key factor, clearly differentiating it from staff working on the general energy field.This research was funded by the European Union’s H2020 Research and Innovation programme under grant agreement 785171—mPOWER project. The research has been supported by ‘Ekopol: Iraunkortasunerako Bideak’ research group, recognised by the Basque Government (IT-1365-19) and the University of the Basque Country (GIC-18/22)

    IEA SHC Task 42/ECES Annex 29 – A Simple Tool for the Economic Evaluation of Thermal Energy Storages

    Get PDF
    Proceedings of the 4th International Conference on Solar Heating and Cooling for Buildings and Industry (SHC 2015)Within the framework of IEA SHC Task 42 / ECES Annex 29, a simple tool for the economic evaluation of thermal energy storages has been developed and tested on various existing storages. On that account, the storage capacity costs (costs per installed storage capacity) of thermal energy storages have been evaluated via a Top-down and a Bottom-up approach. The Top-down approach follows the assumption that the costs of energy supplied by the storage should not exceed the costs of energy from the market. The maximum acceptable storage capacity costs depend on the interest rate assigned to the capital costs, the intended payback period of the user class (e.g. industry or building), the reference energy costs, and the annual number of storage cycles. The Bottom-up approach focuses on the realised storage capacity costs of existing storages. The economic evaluation via Top-down and Bottom-up approach is a valuable tool to make a rough estimate of the economic viability of an energy storage for a specific application. An important finding is that the annual number of storage cycles has the largest influence on the cost effectiveness. At present and with respect to the investigated storages, seasonal heat storage is only economical via large sensible hot water storages. Contrary, if the annual number of storage cycles is sufficiently high, all thermal energy storage technologies can become competitive.This study is part of IEA SHC Task 42 / ECES Annex 29 „Compact Thermal Energy Storage - Material Development and System Integration“ (http://task42.iea-shc.org). The work of ZAE Bayern is part of the project PC-Cools_V and supported by the German Federal Ministry for Economic Affairs and Energy under the project code 03ESP138A. University of Zaragoza thanks the Spanish Government for the funding of their work under the projects ENE2008-06687-C02-02, ENE2011-28269-C03-01 and ENE2014-57262-R. University of Lleida would like to thank the Catalan Government for the quality accreditation given to their research group (2014 SGR 123). The research leading to these results has received funding from the European Union's Seventh Framework Program (FP7/2007-2013) under grant agreement n° PIRSES-GA-2013-610692 (INNOSTORAGE) and European Union’s Horizon 2020 research and innovationprogramme under grant agreement No 657466 (INPATH-TES). Laia Miró would like to thank the Spanish Government for her research fellowship (BES-2012-051861). The University of the Basque Country acknowledges the financial support of the Spanish’s Ministry of Economy and Competitiveness through the MicroTES (ENE2012- 38633) research project. The responsibility for the content of this publication is with the author

    Energy Colonialism: A Category to Analyse the Corporate Energy Transition in the Global South and North

    No full text
    This article aims to define the category of energy colonialism in order to analyse the conflicts that are arising due to the deployment of renewable energy megaprojects in the Global South and in the peripheries of the Global North. First, the limits of the corporate energy transition are questioned, and based on an exhaustive bibliographic review, the category of energy colonialism is formulated along with six dimensions that characterise it: geopolitical; economic and financial inequalities; power, violence, and decision making; land grabbing and dispossession; impacts on territories and commons; resistance and socio-territorial conflicts. Based on this framework, we analyse and juxtapose different expressions of energy colonialism in four case studies; the isthmus of Tehuantepec (Oaxaca, Mexico), the territories of Western Sahara occupied by Morocco, the Saami territory in Norway, and the rural territories of Spain. The results from this study allow us to conclude that energy colonialism is a useful concept for understanding and critiquing the effects of the corporate energy transition and establishing a base for grassroots and decolonial alternatives in both the Global North and South

    Optical Performance Assessment of a Handmade Prototype of Linear Fresnel Concentrator

    No full text
    This article aims to evaluate the optical behavior of a small handmade prototype of a linear Fresnel concentrator (LFC). The system was developed and tested as a water heater and steam generator at the Unidades Tecnológicas de Santander university, located in Bucaramanga, Colombia. Optical factors of the thermo-solar system studied were taken into account, such as concentration ratio and optical efficiency relationships. The Monte Carlo ray tracing method (MCRT) was carried out as an optical evaluation tool through the application of the free access software "SolTrace" and "TONATIUH" to later contrast the results obtained with both simulation tools. At the same time, the performance output from the simulations was compared with the optical performance of the experiments previously carried out with the device LFC, with the aim of evaluating the reliability and accuracy of the analysis developed through the MCRT methodology. The results obtained showed that the number of reflective mirrors or area of reflection has a direct impact on the optical efficiency of the prototype, where it is evidenced that there is a higher optical efficiency and a higher CR when the reflection area is larger. Similarly, direct solar radiation (DNI) has the same trend, showing that higher levels of direct solar radiation (DNI) increase optical efficiency. Finally, it was observed that the variation in the number of rays used in the simulations (10,000,000 and 5,000,000) does not influence the optical performance of the device
    corecore