140 research outputs found

    Lifestyle Cardiovascular Risk Score, Genetic Risk Score, and Myocardial Infarction in Hispanic/Latino Adults Living in Costa Rica

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139101/1/jah31925-sup-0001-TablesS1-S4.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139101/2/jah31925.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139101/3/jah31925_am.pd

    LDL containing apolipoprotein CIII is an independent risk factor for coronary events in diabetic patients

    Get PDF
    Objective-Triglyceride-rich lipoproteins that contain apolipoprotein CIII (apoCIII) are prominent in diabetic dyslipidemia. We hypothesized that these lipoproteins increase coronary disease risk in diabetic patients beyond that caused by standard lipid risk factors. Methods and Results-Diabetic patients with previous myocardial infarction were followed for 5 years, and 121 who had a recurrent coronary event were matched to 121 who did not. VLDL and LDL that contained or did not contain apoCIII (CIIIϩ or CIIIϪ) were prepared by immunoaffinity chromatography and ultracentrifugation. apolipoprotein CIII Ⅲ lipoproteins Ⅲ coronary heart disease Ⅲ apolipoprotein E Ⅲ apolipoprotein B P atients with non-insulin-dependent diabetes (NIDDM) have 2 to 3 times higher the risk of coronary heart disease (CHD) than nondiabetic patients. 1-4 Plasma cholesterol, 1,5 LDL cholesterol, 1,5 and HDL cholesterol (HDL-C) 1,5 are strong risk factors for CHD in NIDDM. Diabetic patients have higher plasma triglyceride concentrations than nondiabetic patients. It is not entirely clear whether the high TG concentration contributes independently to CHD in diabetes. In the Paris Prospective Study, TG concentration was an independent predictor in people with impaired glucose tolerance or diabetes even after adjustment for HDL-C and other risk factors. ApoCIII is a small protein on the surface of apoB lipoproteins strongly affecting their metabolism. Alaupovic and colleague

    A prospective analysis of circulating saturated and monounsaturated fatty acids and risk of non-Hodgkin lymphoma

    Get PDF
    Circulating saturated (SFA) and monounsaturated fatty acids (MUFA), which are predominantly derived from endogenous metabolism, may influence non-Hodgkin lymphoma (NHL) risk by modulating inflammation or lymphocyte membrane stability. However, few biomarker studies have evaluated NHL risk associated with these fats. We conducted a prospective study of 583 incident NHL cases and 583 individually matched controls with archived pre-diagnosis red blood cell (RBC) specimens in the Nurses\u27 Health Study (NHS) and Health Professionals Follow-up Study (HPFS). RBC membrane fatty acid levels were measured using gas chromatography. Using multivariable logistic regression, we estimated odds ratios (OR) and 95% confidence intervals (CI) for risk of NHL and major NHL subtypes including T cell NHL (T-NHL), B cell NHL (B-NHL) and three individual B-NHLs: chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma. RBC SFA and MUFA levels were not associated with NHL risk overall. However, RBC very long chain SFA levels (VLCSFA; 20:0, 22:0, 23:0) were inversely associated with B-NHLs other than CLL/SLL; ORs (95% CIs) per standard deviation (SD) increase in level were 0.81 (0.70, 0.95) for 20:0, 0.82 (0.70, 0.95) for 22:0, and 0.82 (0.70, 0.96) for 23:0 VLCSFA. Also, both VLCSFA and MUFA levels were inversely associated with T-NHL [ORs (95% CIs) per SD: VLCSFA, 0.63 (0.40, 0.99); MUFA, 0.63 (0.40, 0.99)]. The findings of inverse associations for VLCSFAs with B-NHLs other than CLL/SLL and for VLCSFA and MUFA with T-NHL suggest an influence of fatty acid metabolism on lymphomagenesis

    ω-3 Polyunsaturated Fatty Acid Biomarkers and Coronary Heart Disease: Pooling Project of 19 Cohort Studies.

    Get PDF
    IMPORTANCE: The role of ω-3 polyunsaturated fatty acids for primary prevention of coronary heart disease (CHD) remains controversial. Most prior longitudinal studies evaluated self-reported consumption rather than biomarkers. OBJECTIVE: To evaluate biomarkers of seafood-derived eicosapentaenoic acid (EPA; 20:5ω-3), docosapentaenoic acid (DPA; 22:5ω-3), and docosahexaenoic acid (DHA; 22:6ω-3) and plant-derived α-linolenic acid (ALA; 18:3ω-3) for incident CHD. DATA SOURCES: A global consortium of 19 studies identified by November 2014. STUDY SELECTION: Available prospective (cohort, nested case-control) or retrospective studies with circulating or tissue ω-3 biomarkers and ascertained CHD. DATA EXTRACTION AND SYNTHESIS: Each study conducted standardized, individual-level analysis using harmonized models, exposures, outcomes, and covariates. Findings were centrally pooled using random-effects meta-analysis. Heterogeneity was examined by age, sex, race, diabetes, statins, aspirin, ω-6 levels, and FADS desaturase genes. MAIN OUTCOMES AND MEASURES: Incident total CHD, fatal CHD, and nonfatal myocardial infarction (MI). RESULTS: The 19 studies comprised 16 countries, 45 637 unique individuals, and 7973 total CHD, 2781 fatal CHD, and 7157 nonfatal MI events, with ω-3 measures in total plasma, phospholipids, cholesterol esters, and adipose tissue. Median age at baseline was 59 years (range, 18-97 years), and 28 660 (62.8%) were male. In continuous (per 1-SD increase) multivariable-adjusted analyses, the ω-3 biomarkers ALA, DPA, and DHA were associated with a lower risk of fatal CHD, with relative risks (RRs) of 0.91 (95% CI, 0.84-0.98) for ALA, 0.90 (95% CI, 0.85-0.96) for DPA, and 0.90 (95% CI, 0.84-0.96) for DHA. Although DPA was associated with a lower risk of total CHD (RR, 0.94; 95% CI, 0.90-0.99), ALA (RR, 1.00; 95% CI, 0.95-1.05), EPA (RR, 0.94; 95% CI, 0.87-1.02), and DHA (RR, 0.95; 95% CI, 0.91-1.00) were not. Significant associations with nonfatal MI were not evident. Associations appeared generally stronger in phospholipids and total plasma. Restricted cubic splines did not identify evidence of nonlinearity in dose responses. CONCLUSIONS AND RELEVANCE: On the basis of available studies of free-living populations globally, biomarker concentrations of seafood and plant-derived ω-3 fatty acids are associated with a modestly lower incidence of fatal CHD.ARIC was carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C), R01HL087641, R01HL59367 and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. The authors thank the staff and participants of the ARIC study for their important contributions. Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research. CHS was supported by contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, and grant U01HL080295 from the National Heart, Lung, and Blood Institute (NHLBI), with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided by R01AG023629 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health The Costa-Rican adult study was supported by grant R01HL081549 from the National Institutes of Health. EURAMIC was supported by the Commission of the European Communities, as a Concerted Action within Directorate General-XII, with additional support from Directorate General-V Europe against Cancer. The national studies were financed by the Dutch Ministry of Health. Ulster Cancer Foundation and Milk Intervention Board. Grant AKT76 from Cancer Research Switzerland. Swiss National Science Foundation Grant 32-9257-87. Spanish FIS and Ministry of Science and Education, and German Federal Health Office EPIC-Norfolk was funded by grants from Medical Research Council and Cancer Research UK. Dr. Imamura also received support from the Medical Research Council Epidemiology Unit Core Support (MC_UU_12015/5). HPFS was supported by the NIH grants UM1 CA167552, R01 HL35464, AA11181, HL35464, CA55075, HL60712 and P30 DK46200 The InChianti study was supported as a ‘targeted project’ (ICS 110.1\RS97.71) by the Italian Ministry of Health and in part by the Intramural Research Program of the NIH (Contracts N01-AG-916413 and N01-AG-821336 and Contracts 263 MD 9164 13 and 263 MD 821336) KIND (Kuopio Ischaemic Heart Disease Risk Factor Study) was supported by grants from the Academy of Finland, Helsinki, Finland (grants 41471, 1041086) MCCS (Melbourne Collaborative Cohort Study) recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further supported by Australian NHMRC grants 209057, 251553 and 504711 and by infrastructure provided by Cancer Council Victoria. Cases and their vital status were ascertained through the Victorian Cancer Registry (VCR) and the Australian Institute of Health and Welfare (AIHW), including the National Death Index and the Australian Cancer Database. MESA and the MESA SHARe project are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-MEHC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-001079, and UL1-TR-000040. Funding for SHARe genotyping was provided by NHLBI Contract N02-HL-64278. Genotyping was performed at Affymetrix (Santa Clara, California, USA) and the Broad Institute of Harvard and MIT (Boston, Massachusetts, USA) using the Affymetric Genome-Wide Human SNP Array 6.0. NSHDS I & II (The Northern Sweden Health & Disease Study I & II) was supported by the Swedish Cancer Society and the Swedish Research Council NHS (Nurses’ Health Study) was supported by research grants UM1 CA186107, R01 CA49449, R01 HL034594, P01CA87969, R01HL034594, and R01HL088521 of the National Institutes of Health The PHS (Physician’s Health Study) was supported by grant R21 HL088081, CA-34944 and CA-40360, and CA-097193 from the National Cancer Institute and grants HL-26490 and HL-34595from the National Heart, Lung, and Blood Institute, Bethesda, MD. The 3C (Three-City) study was conducted under a partnership agreement between the Institut National de la Santé et de la Recherche Médicale (INSERM), the University Bordeaux 2 Victor Segalen and Sanofi-Aventis. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The Three-City study was also supported by the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, MGEN, Institut de la Longévité, Conseils Régionaux d’Aquitaine et Bourgogne, Fondation de France, Ministry of Research-INSERM Programme “Cohortes et collections de données biologiques”, Agence Nationale de la Recherche (grant number COGINUT ANR-06-PNRA-005), the Fondation Plan Alzheimer (grant number FCS 2009-2012), and the Caisse Nationale pour la Solidarité et l’Autonomie (CNSA) . Dr Samieri was on a grant from the “Fondation Plan Alzheimer” SHHEC (Scottish Heart Health Extended Cohort) study was funded by the Scottish Health Department Chief Scientist Organization; British Heart Foundation; FP Fleming Trust. The authors would like to acknowledge Dr. Roger Tavendale for his work with the Scottish Heart Health Study. SCHS (Singapore Chinese Health Study) was supported by the Singapore National Medical Research Council (grant number: NMRC 1270/2010) and the U.S. NIH (grant numbers: R01CA 144034 and UM1 CA182876) ULSAM 50 and 70 were funded by the Swedish Research Council for Health, Working Life and Welfare (FORTE) Uppsala City Council (ALF) and Swedish Research CouncilThis is the final version of the article. It first appeared from American Medical Association via http://dx.doi.org/10.1001/jamainternmed.2016.292

    Biomarkers of Dietary Omega-6 Fatty Acids and Incident Cardiovascular Disease and Mortality: An Individual-Level Pooled Analysis of 30 Cohort Studies

    Get PDF
    BACKGROUND: Global dietary recommendations for and cardiovascular effects of linoleic acid, the major dietary omega-6 fatty acid, and its major metabolite, arachidonic acid, remain controversial. To address this uncertainty and inform international recommendations, we evaluated how in vivo circulating and tissue levels of linoleic acid (LA) and arachidonic acid (AA) relate to incident cardiovascular disease (CVD) across multiple international studies. METHODS: We performed harmonized, de novo, individual-level analyses in a global consortium of 30 prospective observational studies from 13 countries. Multivariable-adjusted associations of circulating and adipose tissue LA and AA biomarkers with incident total CVD and subtypes (coronary heart disease, ischemic stroke, cardiovascular mortality) were investigated according to a prespecified analytic plan. Levels of LA and AA, measured as the percentage of total fatty acids, were evaluated linearly according to their interquintile range (ie, the range between the midpoint of the first and fifth quintiles), and categorically by quintiles. Study-specific results were pooled using inverse-variance–weighted meta-analysis. Heterogeneity was explored by age, sex, race, diabetes mellitus, statin use, aspirin use, omega-3 levels, and fatty acid desaturase 1 genotype (when available). RESULTS: In 30 prospective studies with medians of follow-up ranging 2.5 to 31.9 years, 15 198 incident cardiovascular events occurred among 68 659 participants. Higher levels of LA were significantly associated with lower risks of total CVD, cardiovascular mortality, and ischemic stroke, with hazard ratios per interquintile range of 0.93 (95% CI, 0.88–0.99), 0.78 (0.70–0.85), and 0.88 (0.79–0.98), respectively, and nonsignificantly with lower coronary heart disease risk (0.94; 0.88–1.00). Relationships were similar for LA evaluated across quintiles. AA levels were not associated with higher risk of cardiovascular outcomes; in a comparison of extreme quintiles, higher levels were associated with lower risk of total CVD (0.92; 0.86–0.99). No consistent heterogeneity by population subgroups was identified in the observed relationships. CONCLUSIONS: In pooled global analyses, higher in vivo circulating and tissue levels of LA and possibly AA were associated with lower risk of major cardiovascular events. These results support a favorable role for LA in CVD prevention

    Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: A comparative risk assessment

    Get PDF
    Background: High blood pressure, blood glucose, serum cholesterol, and BMI are risk factors for cardiovascular diseases and some of these factors also increase the risk of chronic kidney disease and diabetes. We estimated mortality from cardiovascular diseases, chronic kidney disease, and diabetes that was attributable to these four cardiometabolic risk factors for all countries and regions from 1980 to 2010. Methods: We used data for exposure to risk factors by country, age group, and sex from pooled analyses of population-based health surveys. We obtained relative risks for the effects of risk factors on cause-specific mortality from meta-analyses of large prospective studies. We calculated the population attributable fractions for each risk factor alone, and for the combination of all risk factors, accounting for multicausality and for mediation of the effects of BMI by the other three risks. We calculated attributable deaths by multiplying the cause-specific population attributable fractions by the number of disease-specific deaths. We obtained cause-specific mortality from the Global Burden of Diseases, Injuries, and Risk Factors 2010 Study. We propagated the uncertainties of all the inputs to the final estimates. Findings: In 2010, high blood pressure was the leading risk factor for deaths due to cardiovascular diseases, chronic kidney disease, and diabetes in every region, causing more than 40% of worldwide deaths from these diseases; high BMI and glucose were each responsible for about 15% of deaths, and high cholesterol for more than 10%. After accounting for multicausality, 63% (10·8 million deaths, 95% CI 10·1-11·5) of deaths from these diseases in 2010 were attributable to the combined effect of these four metabolic risk factors, compared with 67% (7·1 million deaths, 6·6-7·6) in 1980. The mortality burden of high BMI and glucose nearly doubled from 1980 to 2010. At the country level, age-standardised death rates from these diseases attributable to the combined effects of these four risk factors surpassed 925 deaths per 100 000 for men in Belarus, Kazakhstan, and Mongolia, but were less than 130 deaths per 100 000 for women and less than 200 for men in some high-income countries including Australia, Canada, France, Japan, the Netherlands, Singapore, South Korea, and Spain. Interpretation: The salient features of the cardiometabolic disease and risk factor epidemic at the beginning of the 21st century are high blood pressure and an increasing effect of obesity and diabetes. The mortality burden of cardiometabolic risk factors has shifted from high-income to low-income and middle-income countries. Lowering cardiometabolic risks through dietary, behavioural, and pharmacological interventions should be a part of the global response to non-communicable diseases. Funding: UK Medical Research Council, US National Institutes of Health. © 2014 Elsevier Ltd
    corecore