31 research outputs found
Flow of low viscosity Boger fluids through a microfluidic hyperbolic contraction
In this work we focus on the development of low viscosity Boger fluids and assess their elasticity analyzing the flow through a microfluidic hyperbolic contraction. Rheological tests in shear and extensional flows were carried out in order to evaluate the effect of the addition of a salt (NaCl) to dilute aqueous solutions of polyacrylamide at 400, 250, 125 and 50 ppm (w/w). The rheological data showed that when 1% (w/w) of NaCl was added, a significant decrease of the shear viscosity curve was observed, and a nearly constant shear viscosity was found for a wide range of shear rates, indicating Boger fluid behavior. The relaxation times, measured using a capillary break-up extensional rheometer (CaBER), decreased for lower polymer concentrations, and with the addition of NaCl. Visualizations of these Boger fluids flowing through a planar microfluidic geometry containing a hyperbolic contraction, which promotes a nearly uniform extension rate at the centerline of the geometry, was important to corroborate their degree of elasticity. Additionally, the quantification of the vortex growth upstream of the hyperbolic contraction was used with good accuracy and reproducibility to assess the relaxation time for the less concentrated Boger fluids, for which CaBER measurements are difficult to perform
Nanogel formation of polymer solutions flowing through porous media
A gelation process was seen to occur when Boger fluids made from aqueous solutions of polyacrylamide (PAA) and NaCl flowed through porous media with certain characteristics. As these viscoelastic fluids flow through a porous medium, the pressure drop across the bed varies linearly with the flow rate, as also happens with Newtonian fluids. Above a critical flow rate, elastic effects set in and the pressure drop grows above the low-flow-rate linear regime. Increasing further the flow rate, a more dramatic increase in the slope of the pressure drop curve can be observed as a consequence of nanogel formation. In this work, we discuss the reasons for this gelation process based on our measurements using porous media of different sizes, porosity and chemical composition. Additionally, the rheological properties of the fluids were investigated for shear and extensional flows. The fluids were also tested as they flowed through different microfluidic analogues of the porous media. The results indicate that the nanogel inception occurs with the adsorption of PAA molecules on the surface of the porous media particles that contain silica on their surfaces. Subsequently, if the interparticle space is small enough a jamming process occurs leading to flow-induced gel formation
Assessing the Dynamic Performance of Microbots in Complex Fluid Flows
The use of microbots in biomedicine is a powerful tool that has been an object of study in the last few years. In the special case of using these microdevices in the human circulatory system to remove clots or to deliver drugs, the complex nature of blood flow must be taken into account for their proper design. The dynamic performance, defined in this context as the quantification of the disturbance of the flow around an object (which is essentially dependent on the microbot morphology and the rheological characteristics of the fluid) should be improved in order to diminish the damage inside the patient body and to increase the efficiency when they swim through the main veins or arteries. In this article, different experimental techniques (micro-Particle Image Velocimetry, flow visualization, pressure drop measurements, etc.) are analyzed to assess their dynamic performance when they swim through the human body immersed in complex fluid flows. This article provides a useful guide for the characterization of the dynamic performance of microbots and also highlights the necessity to consider the viscoelastic character of blood in their design
A review of computational hemodynamics in middle cerebral aneurysms and rheological models for blood flow
Cerebrovascular accidents are the third most common cause of death in developed countries. Over recent years, Computational Fluid Dynamics simulations using medical image-based anatomical vascular geometries have been shown to have great potential as a tool for diagnostic and treatment of brain aneurysms, in particular to help advise on the best treatment options. This work aims to present a state of the art review of the different models used in Computational Fluid Dynamics, focusing in particular on modelling blood as a viscoelastic non-Newtonian fluid in order to help understand the role of the complex rheological nature of blood upon the dynamics of middle cerebral aneurysms. Moreover, since the mechanical properties of the vessel walls also play an important role in the cardiovascular system, different models for the arterial structure are reviewed in order to couple Computational Fluid Dynamics and Computational Solid Dynamics to allow the study of the fluid-structure interaction
Hemodynamics Challenges for the Navigation of Medical Microbots for the Treatment of CVDs
Microbots have been considered powerful tools in minimally invasive medicine. In the last few years, the topic has been highly studied by researchers across the globe to further develop the capabilities of microbots in medicine. One of many applications of these devices is performing surgical procedures inside the human circulatory system. It is expected that these microdevices traveling along the microvascular system can remove clots, deliver drugs, or even look for specific cells or regions to diagnose and treat. Although many studies have been published about this subject, the experimental influence of microbot morphology in hemodynamics of specific sites of the human circulatory system is yet to be explored. There are numerical studies already considering some of human physiological conditions, however, experimental validation is vital and demands further investigations. The roles of specific hemodynamic variables, the non-Newtonian behavior of blood and its particulate nature at small scales, the flow disturbances caused by the heart cycle, and the anatomy of certain arteries (i.e., bifurcations and tortuosity of vessels of some regions) in the determination of the dynamic performance of microbots are of paramount importance. This paper presents a critical analysis of the state-of-the-art literature related to pulsatile blood flow around microbots