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a b s t r a c t

In this work we focus on the development of low viscosity Boger fluids and assess their elasticity analyz-
ing the flow through a microfluidic hyperbolic contraction. Rheological tests in shear and extensional
flows were carried out in order to evaluate the effect of the addition of a salt (NaCl) to dilute aqueous
solutions of polyacrylamide at 400, 250, 125 and 50 ppm (w/w). The rheological data showed that when
1% (w/w) of NaCl was added, a significant decrease of the shear viscosity curve was observed, and a nearly
constant shear viscosity was found for a wide range of shear rates, indicating Boger fluid behavior. The
relaxation times, measured using a capillary break-up extensional rheometer (CaBER), decreased for
lower polymer concentrations, and with the addition of NaCl. Visualizations of these Boger fluids flowing
through a planar microfluidic geometry containing a hyperbolic contraction, which promotes a nearly
uniform extension rate at the centerline of the geometry, was important to corroborate their degree of
elasticity. Additionally, the quantification of the vortex growth upstream of the hyperbolic contraction
was used with good accuracy and reproducibility to assess the relaxation time for the less concentrated
Boger fluids, for which CaBER measurements are difficult to perform.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Microfluidics is the science and technology which deals with
systems that process small amounts of fluid, using channels with
dimensions of tens to hundreds of micrometers. This area of
knowledge has been taking advantage of certain fundamental dif-
ferences between the behavior of fluids moving in large channels
and those flowing through micrometer-scale channels either for
fundamental or practical applications [1].

Normally, when fluid properties in shear and elongational flow
are measured using conventional rheometers, the characteristic
length-scales are of the order of 1–10 mm and involve sample vol-
umes around 1–10 ml [2,3]. In spite of the fact that these methods
are well established and are good enough to study a vast number of
fluids, there are situations when it is necessary to understand fluid
rheology in smaller length-scale devices. Some of these cases are
related with the study of the flow of fluids with surface active mol-
ecules (like many biofluids), at interface conditions, experiments
under very high deformation rates without inertial effects or flow
properties with length-scales close to the fluid microstructure
(e.g. blood flow in small capillaries, among others). The possibility
of maintaining small Reynolds number (Re) flows when experi-
menting with low viscosity elastic fluids at very high deformation

rates is practically impossible in macroscale devices. In these de-
vices, inertial flow effects severely interfere with the elastic re-
sponse of fluids at high rates of deformation. However, the small
length-scales typical of microfluidic devices reduce significantly
the role of inertia and for this reason microfluidic devices consti-
tute a valuable alternative for carrying out experiments at large
deformation rates and low Reynolds numbers [4]. A consequence
of the small length-scales used in microfluidic devices and the abil-
ity to access a large range of deformation rates is that strong visco-
elastic effects can be achieved in fluids that would otherwise
behave essentially as Newtonian fluids in the equivalent macro-
scale flows [4,5]. Thus, microfluidics is an excellent tool for the
development of an extensional rheometer for dilute polymer solu-
tions [6]. Furthermore, straightforward miniaturization of classical
macroscale devices has been shown to be effective for measuring
shear properties under certain conditions [7].

The use of microchannels with hyperbolic contractions induces
nearly constant extension rates at the centerline of the
micro-geometry, and constitutes an innovative technique for the
determination of the extensional viscosity, allowing fluid flow
experiments to be carried out under strong accelerations [6]. Fur-
thermore, the possibility offered by this configuration of realizing
a quasi-homogeneous elongational flow along the centerline is
an important requirement to perform meaningful rheometric
measurements.

Non-Newtonian fluid flows at the microscale are complex to de-
scribe mathematically due to their shear rate dependent viscosity
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and their elastic behavior, which are greatly enhanced given the
typically small residence times [8]. In some cases the nature of
the flows changes from a simple shear flow to a complex exten-
sional flow in which polymer chains can evolve from coiled to
stretched configurations in very small time frames. The elasticity
of the fluid, which is characterized via its relaxation time, is an
important property here. Since non-Newtonian fluids can have
elastic behavior and at the same time exhibit nonlinear viscous ef-
fects like shear-thinning of the viscometric viscosity, it is particu-
larly difficult to study viscoelastic flows in isolation from other
effects.

Most viscoelastic liquids are polymer melts or solutions and
therefore are inherently shear thinning. However, there is a class
of viscoelastic fluids, known as Boger fluids, in which the viscosity
is nearly independent of the shear rate [9]. Most Boger fluids are
prepared using highly viscous solvents, as this minimizes the shear
thinning effects introduced by the polymer additives. Boger fluids
are particularly important because they enable elastic effects to
be probed separately from shear thinning effects; by comparing
the results of Boger fluid flow with those of Newtonian fluid flow
at the same Reynolds number allows one to assess the influence
of viscoelasticity. The ability to distinguish between elastic and vis-
cous effects has significantly advanced the field of experimental
and computational rheology, because the influence of elasticity (al-
ways a complex fluid property) can be isolated in a straightforward
way [10]. Several studies related with the extensional flow of
highly viscous Boger fluids and shear thinning viscoelastic fluids
have been reported in the literature [4,11–17].

The fluids commonly used in microfluidics are not very viscous
in order to guarantee the structural integrity of the chips, and
therefore typical Boger fluids are not very useful in this context.
However, it would still be very interesting to be able to use low vis-
cosity Boger fluids in order to isolate elastic effects in the context
of microfluidic applications. Amongst the most common viscoelas-
tic non-Newtonian fluids used in microfluidics are aqueous solu-
tions of polyacrylamide (PAA). Some experimental studies using
PAA solutions have shown complex behavior such as a significant
pressure drop enhancement in porous media [18], mechanical deg-
radation and macromolecular adsorption [19], development of var-
ious elastic-driven instabilities at low Re [20], and even transition
to elastic turbulence [21]. However, the addition of these polymers
to water, even at small concentrations, imparts significant shear-
thinning and elasticity and the separation of both effects is a diffi-
cult task.

Interestingly, an experimental study carried out by Aitkadi et al.
[22] investigated the effect of adding salt on the viscoelastic prop-
erties of PAA aqueous solutions and showed that NaCl had a stabi-
lizing effect on the solution shear viscosity. In this way it would be
possible to obtain a Boger fluid, using PAA aqueous solutions, with
some degree of elasticity and a low nearly-constant shear viscosity.
Also, several other authors analyzed the effect of polymer concen-
tration [23,24] and the addition of NaCl [25–27], but we were un-
able to find any studies focusing on the development of low
viscosity Boger fluids, and their application in microfluidic devices.

In this work the rheological effect of the addition of NaCl to di-
lute PAA aqueous solutions with different concentrations is inves-
tigated in order to obtain low viscosity Boger fluids, which are
particularly useful to investigate elastic effects in microfluidic de-
vices. The combination of low viscosity Boger fluids with microflui-
dics allows elastic effects to be observed (which at the macroscale
would likely be overwhelmed by fluid inertia) and to be distin-
guished from other non-Newtonian effects like shear-thinning.
Microfabricated geometries containing a hyperbolic contraction
section followed by an abrupt expansion are used and the flow is
characterized using flow visualization and pressure drop measure-
ments. This flow investigation is also used as an indirect method of

measuring the relaxation time of the Boger fluids through the
quantification of vortex growth upstream of the hyperbolic con-
traction, with the results subsequently compared with direct mea-
surements using a CaBER device.

2. Materials and methods

2.1. Low viscosity Boger fluids

The polymer used to prepare the low viscosity Boger fluids was
PAA with a molecular weight Mw = 18 � 106 g mol�1 (Polyscienc-
es). Solutions were prepared by mixing the polymer into the sol-
vent (de-ionized water) at different weight concentrations (50,
125, 250 and 400 ppm), utilizing magnetic stirrers at low speeds
in order to prevent mechanical degradation of the polymer mole-
cules. Additionally, to prevent degradation all solutions were kept
in a refrigerator prior to their use. In order to obtain low viscosity
Boger fluids, 1% (w/w) of NaCl was added to the solutions. Similar
concentrations were used in other works also using PAA solutions,
but at higher solvent viscosities [14,28].

The fluid density (q) was measured at 20.0 �C using a 25 ml
hydrometer and the solutions were shown to have similar densi-
ties: 998.7, 998.8, 998.6 and 998.3 kg/m3 for 400, 250, 125 and
50 ppm of PAA, respectively.

2.2. Rheological characterization of the fluids

The rheology of the fluids was measured in both extensional
and shear flows. For the shear measurements, experiments were
performed on two stress-controlled shear rheometers: Anton Paar,
model Physica MCR301; TA Instruments, model AR-G2. A prelimin-
ary study to determine the most appropriate geometry was done
using the solvent, distilled water, at 20 �C. The results allowed us
to conclude that the most suitable geometry for measurements
at high shear-rates is the plate-plate configuration, with a diameter
of 50 mm and a gap of 0.1 mm.

Steady shear flow measurements in the range of shear rates,
0:1 6 _c=s�1

6 10;000, were carried out at different temperatures.
For the extensional flow, a Haake CaBER-1 extensional rheometer
(Thermo Haake GmbH) was used, equipped with circular plates
6 mm in diameter and a laser micrometer in order to follow the fil-
ament diameter evolution over time. In the present study the ini-
tial and the final gap between plates were set to 3.0 and
12.03 mm, respectively. Fluid samples were carefully loaded be-
tween the plates using a syringe to ensure the absence of trapped
air within the sample.

All rheological experiments were carried out at least in tripli-
cate in order to corroborate reproducibility. Trends were deemed
significant if the mean values of compared sets differed by
p 6 0.05 (Student’s t-test).

2.3. Microchannel geometry

The channels were fabricated in polydimethylsiloxane, PDMS
(Sylgard 184, Dow Corning), from an SU-8 photoresist mold using
standard soft lithography techniques [29]. The microchannels used
are planar, i.e., they have a constant depth, and have a contraction
with a hyperbolic shape, followed by an abrupt expansion as
shown in Fig. 1. This configuration provides a nearly constant
strain rate of the fluid flow along the centerline of the microgeom-
etry [5,6,30]. The total width of the microchannel printed in the
chrome mask is D1 = 400 lm, the minimum width of the contrac-
tion is D2 = 54 lm and the hyperbolic contraction length is
Lc = 128 lm (Fig. 1). Therefore, the total Hencky strain defined as
eH = ln(D1/D2), amounts to eH = 2. However, the final PDMS
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microchannels obtained by replication using the SU-8 mold pres-
ent a slightly different shape from that projected initially. In fact,
the real value of the depth (h) of the microchannels, h = 45 lm, is
lower than the projected value of 50 lm. Measurements of the real
dimensions of the contraction were carried out with the Image Pro-
cessing Toolbox™ of MatLab (Version 7.10.0.499-R2010a) using a
microscopy image of the contraction region. For this purpose, in or-
der to determine the contour of the hyperbolic geometry, a Carte-
sian coordinate system was placed as illustrated in Fig. 1 and the
contour of the channel walls was determined pixel by pixel consid-
ering the distribution of intensities in an indexed or grayscale
image.

Once the position of each pixel of the contour was determined,
it was placed in the Cartesian coordinate system considering the
calculated ratio 0.927 lm/pixel for the optical set-up used. The
set of points corresponding to each hyperbolic wall fits accurately
to the curve y = ± 200/[1 + 0.05(x + L⁄)], valid for �L⁄ 6 x 6 0. This
fit (shown as a thick red1 line in Fig. 1) gives us a value of
L⁄ = 126 ± 1 lm. The corner features of the final geometries were
not as sharp as printed on the chrome mask, a limitation of the fab-
rication techniques used, but had radius of curvature of
Ra = 8 ± 1 lm, Rb = 8 ± 1 lm and Rc = 11 ± 1 lm as is shown in
Fig. 1, also determined using the Image Processing Toolbox™ of
MatLab.

2.4. Description of flow setup and measuring system

The flow visualizations were carried out using streak photogra-
phy. The optical setup consists of an inverted epi-fluorescence
microscope (DM IL LED, Leica Microsystems GmbH) equipped with
a CCD camera (DFC350 FX, Leica Microsystems GmbH), a light
source (100 W mercury lamp) and a filter cube (Leica

Microsystems GmbH, excitation filter BP 530–545 nm, dichroic
565 nm and barrier filter 610–675 nm). A syringe pump
(PHD2000, Harvard Apparatus) was used to inject the fluid and
control the flow rate in the microchannel. Syringes with different
volumes (50–100 ll) were used according to the desired flow rate
and connected to the microgeometries using Tygon tubing of
0.44 mm internal diameter. The fluids were seeded with 1 lm fluo-
rescent tracer particles (Nile Red, Molecular Probes, Invitrogen, Ex/
Em: 520/580 nm) and sodium dodecyl sulfate (SDS) (0.05 wt%, Sig-
ma-Aldrich) was added in order to minimize adhesion of fluores-
cent tracer particles to the channel walls. It has been shown in
[31] that the addition of 0.05% SDS does not have any significant
effect in the shear viscosity of the PAA solutions with 1% of NaCl.
The microgeometries containing the seeded fluid were continu-
ously illuminated and the light emitted by the fluorescent tracer
particles was imaged through the microscope objective (10�,
NA = 0.25) onto the CCD array of the camera using ’long’ exposure
times (which were varied according to the flow rate) in order to
capture the particles’ pathlines.

The vortex length Lv, was also determined using the Image
Processing Toolbox™ of MatLab (Version 7.10.0.499-R2010a), as
indicated in Fig. 6c, with an experimental uncertainty of ±1 pixel.

The pressure drop (DP) at different flow rates was measured
using Honeywell 26PC differential pressure sensors (26PCA
FA6D) previously calibrated using a static column of water. Two
pressure ports were located upstream and downstream of the con-
traction at locations x = �2.8 mm and x = 2.8 mm, respectively. A
12V DC power supply (Lascar electronics, PSU 206) was used to
power the pressure sensors that were also connected to a com-
puter via a data acquisition card (NI USB-6218, National Instru-
ments) in order to record the output data using LabView v8.2
software. The transient response of the pressure sensors was con-
tinuously recorded until steady-state was reached.

3. Results and discussion

3.1. Rheological measurements

In this section, we compare the rheology of all polyacrylamide
aqueous solutions with and without the addition of NaCl. The stea-
dy shear viscosity of the four PAA solutions (400, 250, 125 and
50 ppm) was measured at different temperatures between
283.2 K and 298.2 K. Using the time–temperature superposition
principle, a master curve was obtained for each fluid at a reference
temperature (293.2 K). The corresponding shift factors aT, to make
the curves overlap, are given by [32]:

aT ¼
gðTÞ

gðTref Þ
Tref

T
qref

q
) aT ffi

gðTÞ
gðTref Þ

ð1Þ

where g(T) is the shear viscosity at temperature T and g(Tref) and
qref are the shear viscosity and density at the reference temperature
Tref. For the small range of temperatures used in the measurements
the fluid density is approximately constant and the ratio Tref/T is
also close to unity. Then, the master curve, for the shear viscosity
can be determined after reducing the viscosity and shear rate
according to Eqs. (2) and (3), respectively:

gr ¼ gðTref Þ ¼
gðTÞ
aT

ð2Þ

_cr ¼ _cðTref Þ ¼ aT _cðTÞ ð3Þ

where gr is the reduced shear viscosity and _cr is the reduced shear
rate. In this way, if we represent all the master curves in a graph, we
can evaluate the effect of the polymer concentration in the shear
viscosity curve. As shown in Fig. 2 all solutions without salt exhibit
a significant shear-thinning behavior, which is stronger at higher
concentrations, a very common behavior with dilute polymer

Fig. 1. SEM image of the microchannel with the contour of the hyperbolic
geometry.

1 For interpretation of color in Figs. 1, 2, 4–11, the reader is referred to the web
version of this article.
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solutions that has been reported by several authors [33,34]. Fur-
thermore, the shear viscosity increases with increasing polymer
concentration as expected.

We should also point out that for the 400 and 250 ppm samples
a slight increase of shear viscosity values at high shear rates is ob-
served, likely due to elastic instabilities.

The above variation of shear viscosity with shear rate, typically
observed for samples without salt, can be accurately described
using a Carreau model:

g ¼ g1 þ
g0 � g1

½1þ ðK _cÞ2�
1�n

2
ð4Þ

where g1 is the viscosity at infinitely large shear rates, g0 is the vis-
cosity in the limit of zero shear rate, K is a time constant (approx-
imately the reciprocal shear rate at which shear thinning effects
start), and n is the power law exponent. In Fig. 2 we present the fit-
tings of the Carreau model to the experimental measurements of
the steady shear rheology.

Fig. 2 also shows the variation of the shear viscosity of the poly-
meric solutions after the addition of NaCl. It is clear that adding salt
leads to a decrease of the shear viscosity and additionally to a sig-
nificantly less pronounced shear thinning behavior. This is due to
the ability of the NaCl to decrease the apparent size of the poly-
acrylamide macromolecules and therefore the viscosity of the
PAA solutions. In a PAA aqueous solution without salt, the amide
groups (NH2) of the PAA molecules are hydrolyzed to produce car-
boxyl groups (COO�) and ammonia [25]. After the hydrolysis, the
negative charges in the chain of the polymer increase and the mol-
ecules of PAA undergo a stretching process as a consequence of the
repulsive forces attributed to these negative charges. So, the higher
viscosity and the stronger shear-thinning are caused by the large

Fig. 2. Master viscosity curves for 400 ppm, 250 ppm, 125 ppm and 50 ppm PAA aqueous solutions with and without the addition of 1% of NaCl, carried out at 283.2 ðjÞ,
288.2 (N), 293.2 (�) and 298.2 K (q). Different symbols correspond to different temperatures, however filled symbols represent samples without salt, and empty symbols
represent samples with NaCl.

Fig. 3. Steady viscosity curves at 20.0 �C for 50 ppm, 125 ppm, 250 ppm and
400 ppm PAA aqueous solutions with 1% of NaCl obtained by a composition of the
measurements from cone plate and parallel plate geometries.

Table 1
Power-law index (n) for all PAA concentrations with NaCl.

Polymer concentration (ppm) n

400 0.89 ± 0.01
250 0.91 ± 0.01
125 0.95 ± 0.01

50 0.97 ± 0.01
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hydrodynamic radii of PAA molecules in the solutions without salt.
Adding NaCl to the solutions leads to an increase of the sodium cat-
ion in the PAA solution, which neutralizes the charges on the poly-
meric chain and this in turn reduces the repulsive forces between

the chains [25]. In this way, the hydrodynamic radii of the PAA
molecules decrease resulting in a lower shear viscosity and less
molecular interference, i.e., lower shear-thinning intensity.

It is clear that for the smallest concentrations, the viscosity
curve is nearly constant in a range of shear rates from 40 s�1 (limit
of the minimum resolution line corresponding to 10 times the min-
imum torque) to 10,000 s�1. However, for the concentrations of
400 and 250 ppm a slight shear-thinning behavior is still present.
For _c < 40 s�1 we observe a slight shear-thinning tendency but
since the viscosities are below the acceptance line (marking 10
times the minimum torque) its uncertainty is large. Note that to
improve accuracy at low shear rates, some measurements were
performed using the more sensitive (at low shear rates) TA Instru-
ments AR-G2 stress-controlled rheometer. In this case, a cone plate
geometry was used to measure the viscosity of the four solutions

Fig. 4. Time evolution of filament diameter in CaBER experiments for 400 ppm,
250 ppm, 125 ppm and 50 ppm PAA aqueous solutions, at 20.0 � C (to improve
visually the figure, only part of the experimental data are plotted)

Table 2
Relaxation times determined from capillary break-up experiments for the different
PAA solutions, at 20 �C.

Polymer concentration (ppm) k (ms)

No salt 1% NaCl

400 105 ± 3 29 ± 2
250 98 ± 3 18 ± 2
125 59 ± 2 10 ± 2

50 10 ± 2 4 ± 1

Fig. 5. Flow patterns for distilled water at different flow rates. The flow direction is from left to right.
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with salt. The data obtained at low shear rates are greatly im-
proved when compared with the measurements obtained using
parallel plate geometry in the MCR301 rheometer. The composed
flow curve from 0.3 to 10,000 s�1 shown in Fig. 3 uses data ob-
tained from both rheometers revealing a nearly constant shear vis-
cosity behavior for the four polymer solutions with salt.

For the PAA solutions with salt we do not observe the well
marked viscosity regions with a low shear rate plateau followed
by the power-law region and the high shear rate low viscosity pla-
teau, hence the viscosity curves were fitted instead by a power-law
fit to the region where some shear thinning is observed, in order to
quantify the variation of the shear viscosity with shear rate for all
polymer solutions. Table 1 presents the values of the index (n) of
the power-law fit to the viscosity of the fluids with salt:

g ¼ K _cn�1 ð5Þ

The PAA sample of 50 ppm exhibits a minimum variation of the
viscosity presenting a power-law index very close to 1. As the con-
centration increases the values of n slightly decrease reaching
n = 0.89 for the PAA sample of 400 ppm. We can consider that
the 125 and 50 ppm PAA solutions with salt are Boger fluids since
the viscosity curves are nearly constant over the whole range of
shear rates tested. For samples of PAA 400 and 250 ppm with salt
a slightly shear-thinning effect is still present and therefore these
solutions are termed as Boger-like fluids. Based on this analysis,
the viscosity values used for subsequent calculations (i.e. g1 for
the Reynolds number as defined in Eq. (7)) are taken as 1.00,
1.05, 1.43 and 1.50 mPa s for samples of 50, 125, 250 and
400 ppm, respectively. These values correspond to the shear vis-
cosity at a shear rate of 10,000 s�1. This consideration relies on

the fact that the range of _c in the microfluidic experiments is
P300 s�1, and in this interval of shear rates the shear viscosity is
practically constant for the four concentrations with NaCl. If we
compare the g1 value for samples without salt with the viscosity
at high shear rates (10,000 s�1) for samples with 1% of NaCl, it is
found that the viscosity reduction due to salt is around 50% for
PAA samples with 400, 250 and 125 ppm and 40% for the lowest
polymer concentration.

The filament thinning behavior of the different PAA solutions
was also investigated using the CaBER rheometer. Fig. 4 shows
the evolution of filament diameter with time for all the PAA solu-
tions. In all cases the exponential decay of the filament diameter is
observed at a certain stage. In this regime, the dynamics of the fil-
ament drainage is governed by a balance between surface tension
and elasticity forces, rather than by fluid viscosity, and follows the
following relation [35]:

DmidðtÞ
D0

¼ GD0

4r

� �1=3

exp½�t=3k� ð6Þ

Fitting the measured data (of time evolution of filament diam-
eter) to Eq. (6) allows the determination of the relaxation time of
the solutions, which are reported in Table 2.

The relaxation time of the polymer molecule reflects the time
required for the chain to relax back to its equilibrium orientation
and configuration following the application and subsequent re-
moval of stress and is affected by the ability of the polymer to relax
given the constraints of adjacent molecules hindering free relaxa-
tion, depending significantly on the viscosity of the suspending
medium [36].

Fig. 6. Flow patterns for the 50 ppm PAA aqueous solution with 1% NaCl at different flow rates. The flow direction is from left to right.
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Fig. 4 shows that break-up time decreases significantly both
with a decrease in polymer concentration, and with the addition
of NaCl. Therefore, a decrease in the relaxation times is also found
with the addition of NaCl, as shown in Table 2.

The samples of PAA 400 and 250 ppm present the highest relax-
ation times, showing a higher degree of elasticity. The addition of
salt leads to a decrease of the relaxation time of around 80% in
samples with higher concentration, and of around 60% for the
PAA 50 ppm sample. The tendency is similar to the one observed
for the shear viscosity value, but the degree of reduction of k is lar-
ger in relative terms.

It is worth saying that for samples at low polymer concentra-
tions, the extensional experiments are more difficult to carry out
and analyze due to their lower viscosities. In such conditions sig-
nificant effects of fluid inertia are present, which reveals itself
through stronger oscillations in the end drops and the loss of axi-
symmetry and of top–bottom symmetry of the filament until the
final breaking point. All these changes lead to less reliable mea-
surements of the relaxation time (in relative terms) for the poly-
mer solutions at lower concentrations [37]. However, more than
10 experiments were carried out for each polymer concentration
in order to reduce the random experimental uncertainty and pro-
vide a better estimate of the total uncertainty, while providing a
more reliable value for the relaxation time. In this way, in spite
of the difficulties of the measurements, their reproducibility was
acceptable and we estimate the total uncertainty as reported in
Table 2.

3.2. Flow patterns and vortex length

Figs. 5–9 show the flow patterns of the flow through the hyper-
bolic contraction/sudden expansion obtained with the Newtonian

fluid (de-ionized water) and the PAA aqueous solutions with 1%
of NaCl, at concentrations of 50, 125, 250 and 400 ppm respec-
tively, as a function of the Reynolds (Re) and Deborah numbers
(De). These two dimensionless numbers are defined as:

Re ¼ qU2D2

g1
¼ qQ

hg1
ð7Þ

De ¼ k _� � kðU2 � U1Þ
L�

¼ k
Q

hL�
1

D2
� 1

D1

� �
ð8Þ

where Q is the volumetric flow rate, h is the constant depth of the
microchannel, q is the fluid density, k is the relaxation time and
L* is the length of the hyperbolic region. D1 and D2 are the widths
of the inlet channel and throat (Fig. 1) and the characteristic viscos-
ity is taken as the high shear rate value g1 obtained from rheolog-
ical experiments in Section 3.1.

In the definition of the Deborah number we consider a strain
rate that assumes average transverse profiles of streamwise veloc-
ity and its linear variation along the hyperbolic region with length
L*. The centerline velocities for fully-developed flow in a rectangu-
lar channel are higher than the bulk velocity (by a factor that may
vary between uc/u = 1.5 and 2.096 corresponding to a large aspect
ratio channel and a square channel, respectively), but we do not
take this effect into consideration to estimate the strain rate.

Converging entry flows show complex flow patterns combining
both shear and extensionally dominated regions: while near the
walls shear effects dominate, along the centerline the flow is pri-
marily extensional and essentially shear-free. Even laminar flows
of Newtonian fluids are highly complex, and can lead to the onset
of asymmetric flow patterns downstream of the expansion plane
above a critical Reynolds number [17,38]. In Fig. 5 we show that
for the Newtonian fluid flow, at low Re the fluid is pushed towards

Fig. 7. Flow patterns for the 125 ppm PAA aqueous solution with 1% NaCl at different flow rates. The flow direction is from left to right.
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the centerline as it flows along the contraction and remains at-
tached to the walls downstream of the expansion in a symmetric
way about the midplane (y = 0) of the device. When Re is further
increased inertial effects become important and lead to the appear-
ance and enhancement of downstream lip vortices (Re > 30). The
recirculations grow with Re and for Re > 49, they already extend
to the side-walls close to the far corner. These results are in agree-
ment with numerical simulations carried out by Oliveira et al. [6].
No recirculation appears upstream of the hyperbolic contraction
region for the range of Re investigated.

For the non-Newtonian fluid cases, the Deborah number is also
used in order to characterize the viscoelastic flow. As shown in
Figs. 6–9, at very low flow rates the flow patterns are Newto-
nian-like without flow separation. Increasing the flow rate above
a critical value, symmetric vortices develop upstream of the hyper-
bolic contraction due to the elasticity of the fluid, which contrasts
with the behavior of the Newtonian liquid (Fig. 5) that showed vor-
tices only downstream as a consequence of inertial effects. The
critical flow rates and corresponding Re and De for the onset of
elasticity-driven upstream flow separation are presented in
Table 3.

These differences are in agreement with the degree of elasticity,
i.e., as the polymer concentration increases, the fluid relaxation
time increases too (Table 2), therefore the elastic effects are stron-
ger and appear at lower flow rates. Note also that varying the con-
centration from 50 ppm to 400 ppm, the critical Reynolds number
decreases by one order of magnitude whereas the critical Deborah
number only changes (increases) by around 40%. Most of this var-
iation in the critical Deborah number comes from the less concen-
trated solution possibly due to non-negligible inertial effects
(between the 125 and 400 ppm solutions the variation in critical

De is only of about 10%), i.e., the critical Deborah is only weakly
dependent on polymer concentration.

Further increasing the Deborah number leads to an increase of
the vortex size due to the progressive enhancement of elastic ef-
fects. The vortex growth regime in viscoelastic fluid flows has been
widely reported, both at the macro- and micro-scale in sudden
contraction geometries [38,39] and in hyperbolic contractions
[5,30]. It is interesting to note that in the experiments reported
by McKinley et al. [5] and Sousa et al. [30] using a different poly-
mer aqueous solution (polyethylene oxide, PEO) the vortex growth
upstream of the contraction presents either asymmetric and/or
time-dependent behavior, while in our case the flow is steady
and symmetric near the critical point.

The vortex growth behavior observed was characterized in
terms of the dimensionless vortex length, XR = Lv/D1 (where Lv is
the vortex length and D1 is the upstream channel width).

The evolution of the normalized vortex length with De is shown
in Fig. 10 for the four polymer solutions with salt. The data for all
four solutions follow approximately the same trend (taking into
account the experimental uncertainty, showed as horizontal error
bars, calculated from the experimental uncertainty of the relaxa-
tion time measurements), which represents a quasi-linear relation-
ship between XR and De. At high De the slope decreases slightly,
especially for the less concentrated solutions. In fact, at high De a
distinct behavior is observed for the PAA 50 ppm solution, but
we must bear in mind that for the less concentrated polymer solu-
tions the Reynolds number becomes important as the flow rate and
consequently (De) increases and its effect contradicts that of elas-
ticity in terms of the length of the upstream recirculation.

The fact that at the lowest concentration the critical De is
slightly smaller than for the highest concentrations as reported

Fig. 8. Flow patterns for the 250 ppm PAA aqueous solution with 1% NaCl at different flow rates. The flow direction is from left to right.
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in Table 3, is confirmed in Fig. 10 (the curves in the low end region
of De). This difference can be traced back to the lack of accuracy in
the experimental determination of the relaxation times using the
CaBER rheometer, which presents some difficulties with low vis-
cosity solutions, as discussed in Section 3.1.

The development of these vortices upstream of the hyperbolic
contraction and the onset of elastic effects are also evident in the
pressure drop measurements between two points located up-
stream and downstream of the contraction, respectively. Fig. 11
shows the variation of pressure drop with flow rate for the four

Fig. 9. Flow patterns for the 400 ppm PAA aqueous solution with 1% NaCl at different flow rates. The flow direction is from left to right.

Table 3
Critical values of flow rate (Qcr), Reynolds (Recr) and Deborah (Decr) numbers for the
onset of flow separation upstream of the hyperbolic contraction for polymer solutions
with 1% NaCl.

Polymer concentration (ppm) Qcr (ml/h) Recr Decr

50 0.95 5.8 2.8
125 0.47 2.8 3.6
250 0.27 1.2 4.0
400 0.17 0.7 4.0

Fig. 10. Effect of Deborah number on the dimensionless vortex length in the steady
symmetric regime for the 50, 125, 250 and 400 ppm PAA aqueous solutions with
salt.

Fig. 11. Pressure drop measurements as a function of the flow rate, for the 50, 125,
250 and 400 ppm PAA aqueous solutions with salt at 20.0 �C.
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polymer aqueous solutions, which exhibit a qualitatively similar
behavior. For water the variation of pressure drop with the flow
rate is characterized by a unique slope across the whole range of
conditions, whereas for each polymer solution there is a dual
behavior. At low flow rates the pressure drop varies with the flow
rate in a linear fashion characterized by a slope that depends on
the viscosity of the solution. When the flow rate is increased above
a critical value, an increase in the slope is observed, which can be
related with the onset of viscoelastic effects. The critical values
determined in this way are in agreement with Decr obtained from
flow visualizations (as shown by the dashed lines Fig. 11). For
the higher polymer concentration the increase of the pressure drop
slope is not as significant due to the competing effects of the slight
shear thinning viscosity at high flow rates.

Based on the previous results we propose as an alternative
method to the CaBER experiment for the determination of the
relaxation time of the dilute polymer solutions to do an extrapola-
tion from the relaxation time obtained for the highest concentra-
tions (400 and 250 ppm) and assuming that the critical De is
essentially independent of the polymer concentration in the range
under consideration here. In this way assuming that Decr � 4 and
by using Eq. (8), we can estimate the relaxation time for the
50 ppm solution, obtaining the value k � 5 ms, which is in good
agreement with the CaBER measurement value, despite the inher-
ent difficulties in obtaining this value.

4. Concluding remarks

This work analyzed the shear and elongational rheology of
aqueous solutions of PAA at different polymer concentrations.
The addition of small amounts of NaCl resulted in a significant de-
crease of shear viscosity and more interestingly in the degree of
shear-thinning. The low viscosity Boger fluids developed are par-
ticularly useful to study elastic effects in microchannel devices,
due to the characteristic reduction of inertial effects at the micro-
scale. The visualizations of the flow patterns in the hyperbolic con-
traction/abrupt expansion microfluidic channel was relevant in
order to corroborate the degree of elasticity of each Boger fluid
and in the determination of the relaxation times for the solutions
with the lowest polymer concentrations. This assessment was
made by a quantification of the normalized vortex length upstream
of the contraction and in particular by the determination of the
critical Deborah number for the onset of the upstream vortex
which is assumed to be independent, or only weakly dependent,
of polymer concentration in the absence of inertial effects. This
weak dependency is corroborated by a universal XR vs. De curve.
Pressure drop measurements are also useful, but in this case shear
thinning effects can complicate the analysis.

The advances of this work are based on the fact that elastic ef-
fects were isolated from viscous effects using low viscosity Boger
fluids and Boger-like fluids, adding 1% of NaCl to different concen-
trations of PAA. The use of a microchannel with a hyperbolic con-
traction with these fluids constitutes a potential tool to quantify
the relaxation time of low polymer concentration when CaBER
measurements are not reliable.
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