10 research outputs found

    Publisher Correction:Fuelling conditions at staging sites can mitigate Arctic warming effects in a migratory bird (Nature Communications, (2018), 9, 1, (4263), 10.1038/s41467-018-06673-5)

    Get PDF
    In the original HTML version of this Article, the order of authors within the author list was incorrect. The consortium VRS Castricum was incorrectly listed after Theunis Piersma and should have been listed after Cornelis J. Camphuysen. This error has been corrected in the HTML version of the Article; the PDF version was correct at the time of publication

    Fuelling conditions at staging sites can mitigate Arctic warming effects in a migratory bird

    Get PDF
    Under climate warming, migratory birds should align reproduction dates with advancing plant and arthropod phenology. To arrive on the breeding grounds earlier, migrants may speed up spring migration by curtailing the time spent en route, possibly at the cost of decreased survival rates. Based on a decades-long series of observations along an entire flyway, we show that when refuelling time is limited, variation in food abundance in the spring staging area affects fitness. Bar-tailed godwits migrating from West Africa to the Siberian Arctic reduce refuelling time at their European staging site and thus maintain a close match between breeding and tundra phenology. Annual survival probability decreases with shorter refuelling times, but correlates positively with refuelling rate, which in turn is correlated with food abundance in the staging area. This chain of effects implies that conditions in the temperate zone determine the ability of godwits to cope with climate-related changes in the Arctic

    Quantifying nutrient inputs by gulls to a fluctuating lake, aided by movement ecology methods

    No full text
    Eutrophication of aquatic ecosystems is a global problem with major ecological and economic impacts. In many lakes and reservoirs, guanotrophication occurs when roosting waterbirds import nutrients (nitrogen and phosphorus) from surrounding terrestrial habitats. To date, nutrient loading by waterbirds has been estimated based on censuses in the absence of detailed information on their movements. We quantified nutrient importation by the lesser black-backed gull (Larus fuscus) to Fuente de Piedra (1,350 ha) in Andalusia (south-west Spain), where an average of 36,288 individuals are counted in January. During seven winters from 2010 to 2017, we used movement data from 20 individual gulls tagged with Global Positioning System trackers that foraged in four landfills. Together with monthly bird counts and measurements of total N and P content in faeces and pellet samples, movement data were used to quantify the total external loading effect for different winters. Movement data allowed us to quantify the proportion of time spent in the lake and the time spent at different foraging sites and enabled correction of censuses. According to tracking data, on average 69% of the birds had already left the lake to head for feeding sites when waterbird counts were carried out. Nutrient inputs to the lake depend partly on the proportion of the day that gulls spend there, which was higher in late winters and was reduced when lake depth went below or above 20–35 cm. An estimated average of 10.17 kg N ha−1 year−1 and 2.07 kg P ha−1 year−1 were imported to this closed-basin lake by gulls each winter, with highest values recorded in winter 2016–2017. Gull guano is the most important winter source of nutrients to the lake. Regurgitated pellets have been ignored as a source of nutrients in other guanotrophy studies, but we found them to be a more important source of P than faeces. A movement ecology approach complements traditional censuses and facilitates the study of guanotrophication in multiple ways, including identification of sources of nutrients, correction of censuses, and measuring time spent at roost sites.V.M.V. was supported by a PhD contract from Programa Internacional de Becas La Caixa-Severo Ochoa 2016. Lesser black-backed gull count data and FP water levels were provided by the Programa de Emergencias, Control Epidemiológico y Seguimiento de Fauna Silvestre de Andalucía, Consejería de Medio Ambiente y Ordenación del Territorio of Junta de Andalucía, Spain. We thank M. Rendón for his help in the field and him, J. Aguilar Amat and G. Batanero for their useful comments. Part of this work was supported by data and infrastructure provided by INBO and VLIZ as part of the Flemish contribution to the LifeWatch observatory funded by FWO. The UvA-Bits tracking studies are facilitated by infrastructures for e-Science, developed with support of the NLeSC (http://www.esciencecenter.com/) and LifeWatch, carried out on the Dutch national e-infrastructure with support from the SURF Foundation. The data are held jointly by the BTO, University of Amsterdam, NIOZ, INBO and the funders of the project, and can be made available through their agreement. This work complied with Dutch law regarding ethical matters (#DEC-KNAW CL07.03). For birds in the U.K., tagging was undertaken under licence and approved by the independent Special Methods Technical Panel of the U.K. Ringing Scheme. This research was supported by Spanish National Plan project CGL2016-76067-P (AEI/FEDER, EU).Peer reviewe

    Body size variation of a high-Arctic seabird: the dovekie (Alle alle)

    No full text
    Abstract Variation in body size among subpopulations of the same species may reflect phenotypic or genetic responses to environmental gradients or geographical distance. Here, we examine geographical variation in the body size of the dovekie (Alle alle), the most numerous highArctic seabird. Locations of dovekie breeding sites are largely restricted to the high-Arctic zone of the Atlantic. We compared wing length, head-bill length, body mass, and a body size index of 1,076 birds from nine main colonies spanning a large part of the breeding range of the species. Results suggest morphological variation across the studied populations of dovekies, with a longitudinal increase in body size from west to east. The smallest birds breed in the western part of the population (Greenland and Jan Mayen), middle-sized individuals on Svalbard, and the largest birds (A. a. polaris subspecies) breed in the eastern part of the studied area, Franz Josef Land. Environmental (air temperature, wind speed, and sea surface temperature) and geographical (intercolonial distance) parameters were analyzed to explore potential mechanisms driving differences in body size. The body size of birds increased significantly with decreasing air temperature, but only when the two subspecies were considered. We did not find a relationship between sea surface temperature and body size of birds. Also, no close relationship was revealed between birds' body size and the geographical distance between colonies. Whether the body size variation of dovekie can be explained by phenotypic plasticity in response to environmental conditions in wintering areas or a pattern of distance-independent gene flow between colonies remains to be explored

    Spatial patterns of weed dispersal by wintering gulls within and beyond an agricultural landscape

    Get PDF
    Non-frugivorous waterbirds disperse a wide variety of plants by endozoochory, providing longer-dispersal distances than other mechanisms. Many waterbirds visit both agricultural and natural landscapes during their daily movements, but potential bird-mediated dispersal of weed plants within and from agricultural landscapes to other habitats is commonly overlooked. Gulls (Laridae) are expanding in numbers and increasingly exploiting anthropogenic habitats worldwide, with possible growing implications for the spread of weeds. Yet, to date, there are no studies on the spatial distribution of weed dispersal by waterbirds. We developed a plant dispersal model based on movements of 19 Larus fuscus using ricefields, via GPS telemetry. We combined daily movements with two curves estimating the retention times of plant seeds in their guts: (a) an experimental curve based on retention time in captivity for four weeds with dry fruits known to be dispersed by gulls: Juncus bufonius, Cyperus difformis, Polypogon monspeliensis and the alien Amaranthus retroflexus; (b) a theoretical curve based on the interspecific scaling relationship between body mass and mean retention time. Median dispersal distances of weed plant seeds by gulls ranged between 690 and 940 m, but maximum distances exceeded 150 km. The theoretical retention time model showed higher median dispersal distances than the experimental retention time model. Spatial patterns of weed deposition were very similar between retention time methods, and most strongly depended on gull movements. Variation between individual gulls had little influence on seed shadows. About 92% of all seeds (>10,000 intact seeds per day) were dispersed within the ricefield area of 370 km2. The remaining 8% of seeds were deposited beyond ricefields into other habitats, 42% of which reached moist environments (other irrigated agriculture, rivers and natural wetlands) presumably suitable for weed establishment. Synthesis. Gulls can disperse weed plants over long distances across a mosaic of habitats. This implies exchange of weed plant species between human-dominated and natural areas by waterbirds as dispersal vectors. This spatial study highlights the importance of non-frugivorous birds for long-distance plant dispersal, which is generally an overlooked mechanism in studies aiming to predict and manage expansion of weed plants.Peer reviewe

    Unexpected dietary preferences of Eurasian Spoonbills in the Dutch Wadden Sea: spoonbills mainly feed on small fish not shrimp

    No full text
    After an historical absence, over the last decades Eurasian Spoonbills Platalea leucorodia leucorodia have returned to breed on the barrier islands of the Wadden Sea. The area offers an abundance of predator-free nesting habitat, low degrees of disturbance, and an extensive intertidal feeding area with increasing stocks of brown shrimp Crangon crangon, the assumed main prey of P. leucorodia leucorodia. Nevertheless, newly established and expanding colonies of spoonbills have surprisingly quickly reached plateau levels. Here we tested the often stated assertion that spoonbills mainly rely on brown shrimp as food, by quantifying the diet of chicks on the basis of regurgitates and by analysis of blood isotopes using stable isotope Bayesian mixing models. Both methods showed that, rather than brown shrimp being the staple food of spoonbill chicks,small flatfish (especially plaice Pleuronectes platessa) and gobies (Pomatoschistus spp.) were their main prey. Unlike shrimp, small flatfish have been reported to be rather scarce in the Wadden Sea in recent years, which may explain the rapid saturation of colony size due to food-related density-dependent recruitment declines of growing colonies. By way of their diet and colony growth characteristics, spoonbills may thus indicate the availability of small fish in the Wadden Sea. We predict that the recovery to former densities of young flatfish and other juvenile/small fish in the Wadden Sea will be tracked by changing diets (more fish) and an increase in the size of Eurasian Spoonbill colonies across the Wadden Sea

    Fuelling conditions at staging sites can mitigate Arctic warming effects in a migratory bird

    Get PDF
    Advancing phenological timing is a risk for migratory birds, particularly in the Arctic where change is most rapid. Here, the authors show that bar-tailed godwits can adjust for phenological shifts by fuelling faster at staging areas to arrive at breeding sites in time

    Fuelling conditions at staging sites can mitigate Arctic warming effects in a migratory bird

    No full text
    Under climate warming, migratory birds should align reproduction dates with advancing plant and arthropod phenology. To arrive on the breeding grounds earlier, migrants may speed up spring migration by curtailing the time spent en route, possibly at the cost of decreased survival rates. Based on a decades-long series of observations along an entire flyway, we show that when refuelling time is limited, variation in food abundance in the spring staging area affects fitness. Bar-tailed godwits migrating from West Africa to the Siberian Arctic reduce refuelling time at their European staging site and thus maintain a close match between breeding and tundra phenology. Annual survival probability decreases with shorter refuelling times, but correlates positively with refuelling rate, which in turn is correlated with food abundance in the staging area. This chain of effects implies that conditions in the temperate zone determine the ability of godwits to cope with climate-related changes in the Arctic

    Dataset and Code for: Fuelling conditions at staging sites can mitigate Arctic warming effects in a migratory bird

    No full text
    Our study combines data on godwits and their food resources at the main wintering, spring refuelling, and breeding sites along the flyway. To track in detail how individual birds connect these sites, we instrumented eight godwits with satellite transmitters in 2016. To estimate population trends, we counted birds each winter from 2002 to 2016 at the main wintering area, the Banc d’Arguin, Mauritania, West Africa. For godwits staging in the Wadden Sea during northward migration, we assessed the relationship between the annual refuelling rates and the density of their main prey, adult lugworms (Arenicola marina), using a 21-year dataset and a hierarchical Bayesian model that accounted for year-specific arrival dates and arrival mass of godwits
    corecore