45,356 research outputs found
Field-Effect Transistors on Tetracene Single Crystals
We report on the fabrication and electrical characterization of field-effect
transistors at the surface of tetracene single crystals. We find that the
mobility of these transistors reaches the room-temperature value of $0.4 \
cm^2/Vs$. The non-monotonous temperature dependence of the mobility, its weak
gate voltage dependence, as well as the sharpness of the subthreshold slope
confirm the high quality of single-crystal devices. This is due to the
fabrication process that does not substantially affect the crystal quality.Comment: Accepted by Appl. Phys. Lett, tentatively scheduled for publication
in the November 24, 2003 issu
Geostationary earth climate sensor: Scientific utility and feasibility, phase A
The possibility of accurate broad band radiation budget measurements from a GEO platform will provide a unique opportunity for viewing radiation processes in the atmosphere-ocean system. The CSU/TRW team has prepared a Phase 1 instrument design study demonstrating that measurements of radiation budget are practical from geosynchronous orbit with proven technology. This instrument concept is the Geostationary Earth Climate Sensor (GECS). A range of resolutions down to 20 km at the top of the atmosphere are possible, depending upon the scientific goals of the experiment. These tradeoffs of resolution and measurement repeat cycles are examined for scientific utility. The design of a flexible instrument is shown to be possible to meet the two goals: long-term, systematic monitoring of the diurnal cycles of radiation budget; and high time and space resolution studies of regional radiation features
Science requirements for a global change technology architecture trade study
Science requirements for a global change technology initiative (GCTI) Architecture Trade Study were established by reviewing and synthesizing results from recent studies. A scientific rationale was adopted and used to identify a comprehensive set of measureables and their priorities. Spatial and temporal requirements for a number of measurement parameters were evaluated based on results from several working group studies. Science requirements were defined using these study results in conjunction with the guidelines for investigating global changes over a time scale of decades to centuries. Requirements are given separately for global studies and regional process studies. For global studies, temporal requirements are for sampling every 1 to 12 hours for atmospheric and radiation parameters and 1 day or more for most earth surface measurements. Therefore, the atmospheric measureables provide the most critical drivers for temporal sampling. Spatial sampling requirements vary from 1 km for land and ocean surface characteristics to 50 km for some atmospheric parameters. Thus, the land and ocean surface parameters have the more significant spatial variations and provide the most challenging spatial sampling requirements
Crosslinking of aromatic polyamides via pendant propargyl groups
Methods for crosslinking N-methyl substituted aromatic polyamides were investigated in an effort to improve the applicability of these polymers as matrix resins for Kavlar trademark fiber composites. High molecular weight polymers were prepared from isophthaloyl dichloride and 4,4'- bis(methylamino)diphenylmethane with varying proportions of the N,N'bispropargyl diamine incorporated as a crosslinking agent. The propargylcontaining diamines were crosslinked thermally and characterized by infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Attempts were also made to crosslink polyamide films by exposure to ultraviolet light, electron beam, and gamma radiation
Associated Production of a Z Boson and a Single Heavy-Quark Jet
The leading-order process for the production of a Z boson and a heavy-quark
jet at hadron colliders is gQ -> ZQ (Q=c,b). We calculate this cross section at
next-to-leading order at the Tevatron and the LHC, and compare it with other
sources of ZQ events. This process is a background to new physics, and can be
used to measure the heavy-quark distribution function.Comment: 15 pages, 9 figures. Version to appear in Phys. Rev.
The Ratio of W + N jets To Z/gamma + N jets As a Precision Test of the Standard Model
We suggest replacing measurements of the individual cross-sections for the
production of W + N jets and Z/gamma + N jets in searches for new high-energy
phenomena at hadron colliders by the precision measurement of the ratios (W+0
jet)/(Z+0 jet), (W+1 jet)/(Z+1 jet), (W+2 jets)/(Z+2 jets),... (W+N jets)/(Z+N
jets), with N as large as 6 (the number of jets in ttbarH). These ratios can
also be formed for the case where one or more of the jets is tagged as a b or c
quark. Existing measurements of the individual cross sections for Wenu + N jets
at the Tevatron have systematic uncertainties that grow rapidly with N, being
dominated by uncertainties in the identification of jets and the jet energy
scale. These systematics, and also those associated with the luminosity, parton
distribution functions (PDF's), detector acceptance and efficiencies, and
systematics of jet finding and b-tagging, are expected to substantially cancel
in calculating the ratio of W to Z production in each N-jet channel, allowing a
greater sensitivity to new contributions in these channels in Run II at the
Tevatron and at the LHC.Comment: 10 pages, 8 figures, added reference
Gluon fusion contribution to W+W- + jet production
We describe the computation of the process that contributes
to the production of two -bosons and a jet at the CERN Large Hadron Collider
(LHC). While formally of next-to-next-to-leading order (NNLO) in QCD, this
process can be evaluated separately from the bulk of NNLO QCD corrections
because it is finite and gauge-invariant. It is also enhanced by the large
gluon flux and by selection cuts employed in the Higgs boson searches in the
decay channel , as was first pointed out by Binoth {\it et al.}
in the context of production. For cuts employed by the ATLAS
collaboration, we find that the gluon fusion contribution to
enhances the background by about ten percent and can lead to moderate
distortions of kinematic distributions which are instrumental for the ongoing
Higgs boson searches at the LHC. We also release a public code to compute the
NLO QCD corrections to this process, in the form of an add-on to the package
{\tt MCFM}.Comment: 13 pages, 4 figures, 3 table
b-Initiated processes at the LHC: a reappraisal
Several key processes at the LHC in the standard model and beyond that
involve quarks, such as single-top, Higgs, and weak vector boson associated
production, can be described in QCD either in a 4-flavor or 5-flavor scheme. In
the former, quarks appear only in the final state and are typically
considered massive. In 5-flavor schemes, calculations include quarks in the
initial state, are simpler and allow the resummation of possibly large initial
state logarithms of the type into the
parton distribution function (PDF), being the typical scale of the
hard process. In this work we critically reconsider the rationale for using
5-flavor improved schemes at the LHC. Our motivation stems from the observation
that the effects of initial state logs are rarely very large in hadron
collisions: 4-flavor computations are pertubatively well behaved and a
substantial agreement between predictions in the two schemes is found. We
identify two distinct reasons that explain this behaviour, i.e., the
resummation of the initial state logarithms into the -PDF is relevant only
at large Bjorken and the possibly large ratios 's are
always accompanied by universal phase space suppression factors. Our study
paves the way to using both schemes for the same process so to exploit their
complementary advantages for different observables, such as employing a
5-flavor scheme to accurately predict the total cross section at NNLO and the
corresponding 4-flavor computation at NLO for fully exclusive studies.Comment: Fixed typo in Eq. (A.10) and few typos in Eq. (C.2) and (C.3
- …