45,356 research outputs found

    Field-Effect Transistors on Tetracene Single Crystals

    Full text link
    We report on the fabrication and electrical characterization of field-effect transistors at the surface of tetracene single crystals. We find that the mobility of these transistors reaches the room-temperature value of $0.4 \ cm^2/Vs$. The non-monotonous temperature dependence of the mobility, its weak gate voltage dependence, as well as the sharpness of the subthreshold slope confirm the high quality of single-crystal devices. This is due to the fabrication process that does not substantially affect the crystal quality.Comment: Accepted by Appl. Phys. Lett, tentatively scheduled for publication in the November 24, 2003 issu

    Geostationary earth climate sensor: Scientific utility and feasibility, phase A

    Get PDF
    The possibility of accurate broad band radiation budget measurements from a GEO platform will provide a unique opportunity for viewing radiation processes in the atmosphere-ocean system. The CSU/TRW team has prepared a Phase 1 instrument design study demonstrating that measurements of radiation budget are practical from geosynchronous orbit with proven technology. This instrument concept is the Geostationary Earth Climate Sensor (GECS). A range of resolutions down to 20 km at the top of the atmosphere are possible, depending upon the scientific goals of the experiment. These tradeoffs of resolution and measurement repeat cycles are examined for scientific utility. The design of a flexible instrument is shown to be possible to meet the two goals: long-term, systematic monitoring of the diurnal cycles of radiation budget; and high time and space resolution studies of regional radiation features

    Science requirements for a global change technology architecture trade study

    Get PDF
    Science requirements for a global change technology initiative (GCTI) Architecture Trade Study were established by reviewing and synthesizing results from recent studies. A scientific rationale was adopted and used to identify a comprehensive set of measureables and their priorities. Spatial and temporal requirements for a number of measurement parameters were evaluated based on results from several working group studies. Science requirements were defined using these study results in conjunction with the guidelines for investigating global changes over a time scale of decades to centuries. Requirements are given separately for global studies and regional process studies. For global studies, temporal requirements are for sampling every 1 to 12 hours for atmospheric and radiation parameters and 1 day or more for most earth surface measurements. Therefore, the atmospheric measureables provide the most critical drivers for temporal sampling. Spatial sampling requirements vary from 1 km for land and ocean surface characteristics to 50 km for some atmospheric parameters. Thus, the land and ocean surface parameters have the more significant spatial variations and provide the most challenging spatial sampling requirements

    Crosslinking of aromatic polyamides via pendant propargyl groups

    Get PDF
    Methods for crosslinking N-methyl substituted aromatic polyamides were investigated in an effort to improve the applicability of these polymers as matrix resins for Kavlar trademark fiber composites. High molecular weight polymers were prepared from isophthaloyl dichloride and 4,4'- bis(methylamino)diphenylmethane with varying proportions of the N,N'bispropargyl diamine incorporated as a crosslinking agent. The propargylcontaining diamines were crosslinked thermally and characterized by infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Attempts were also made to crosslink polyamide films by exposure to ultraviolet light, electron beam, and gamma radiation

    Associated Production of a Z Boson and a Single Heavy-Quark Jet

    Full text link
    The leading-order process for the production of a Z boson and a heavy-quark jet at hadron colliders is gQ -> ZQ (Q=c,b). We calculate this cross section at next-to-leading order at the Tevatron and the LHC, and compare it with other sources of ZQ events. This process is a background to new physics, and can be used to measure the heavy-quark distribution function.Comment: 15 pages, 9 figures. Version to appear in Phys. Rev.

    The Ratio of W + N jets To Z/gamma + N jets As a Precision Test of the Standard Model

    Full text link
    We suggest replacing measurements of the individual cross-sections for the production of W + N jets and Z/gamma + N jets in searches for new high-energy phenomena at hadron colliders by the precision measurement of the ratios (W+0 jet)/(Z+0 jet), (W+1 jet)/(Z+1 jet), (W+2 jets)/(Z+2 jets),... (W+N jets)/(Z+N jets), with N as large as 6 (the number of jets in ttbarH). These ratios can also be formed for the case where one or more of the jets is tagged as a b or c quark. Existing measurements of the individual cross sections for Wenu + N jets at the Tevatron have systematic uncertainties that grow rapidly with N, being dominated by uncertainties in the identification of jets and the jet energy scale. These systematics, and also those associated with the luminosity, parton distribution functions (PDF's), detector acceptance and efficiencies, and systematics of jet finding and b-tagging, are expected to substantially cancel in calculating the ratio of W to Z production in each N-jet channel, allowing a greater sensitivity to new contributions in these channels in Run II at the Tevatron and at the LHC.Comment: 10 pages, 8 figures, added reference

    Gluon fusion contribution to W+W- + jet production

    Full text link
    We describe the computation of the ggW+Wggg \to W^+W^-g process that contributes to the production of two WW-bosons and a jet at the CERN Large Hadron Collider (LHC). While formally of next-to-next-to-leading order (NNLO) in QCD, this process can be evaluated separately from the bulk of NNLO QCD corrections because it is finite and gauge-invariant. It is also enhanced by the large gluon flux and by selection cuts employed in the Higgs boson searches in the decay channel HW+W H \to W^+W^-, as was first pointed out by Binoth {\it et al.} in the context of ggW+Wgg \to W^+W^- production. For cuts employed by the ATLAS collaboration, we find that the gluon fusion contribution to ppW+Wjpp \to W^+W^-j enhances the background by about ten percent and can lead to moderate distortions of kinematic distributions which are instrumental for the ongoing Higgs boson searches at the LHC. We also release a public code to compute the NLO QCD corrections to this process, in the form of an add-on to the package {\tt MCFM}.Comment: 13 pages, 4 figures, 3 table

    b-Initiated processes at the LHC: a reappraisal

    Full text link
    Several key processes at the LHC in the standard model and beyond that involve bb quarks, such as single-top, Higgs, and weak vector boson associated production, can be described in QCD either in a 4-flavor or 5-flavor scheme. In the former, bb quarks appear only in the final state and are typically considered massive. In 5-flavor schemes, calculations include bb quarks in the initial state, are simpler and allow the resummation of possibly large initial state logarithms of the type logQ2mb2\log \frac{{\cal Q}^2}{m_b^2} into the bb parton distribution function (PDF), Q{\cal Q} being the typical scale of the hard process. In this work we critically reconsider the rationale for using 5-flavor improved schemes at the LHC. Our motivation stems from the observation that the effects of initial state logs are rarely very large in hadron collisions: 4-flavor computations are pertubatively well behaved and a substantial agreement between predictions in the two schemes is found. We identify two distinct reasons that explain this behaviour, i.e., the resummation of the initial state logarithms into the bb-PDF is relevant only at large Bjorken xx and the possibly large ratios Q2/mb2{\cal Q}^2/m_b^2's are always accompanied by universal phase space suppression factors. Our study paves the way to using both schemes for the same process so to exploit their complementary advantages for different observables, such as employing a 5-flavor scheme to accurately predict the total cross section at NNLO and the corresponding 4-flavor computation at NLO for fully exclusive studies.Comment: Fixed typo in Eq. (A.10) and few typos in Eq. (C.2) and (C.3
    corecore