62,966 research outputs found

    Controllable Gaussian-qubit interface for extremal quantum state engineering

    Full text link
    We study state engineering through bilinear interactions between two remote qubits and two-mode Gaussian light fields. The attainable two-qubit states span the entire physically allowed region in the entanglement-versus-global-purity plane. Two-mode Gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. We show that a small set of parameters characterizing extremally entangled two-mode Gaussian states is sufficient to control the engineering of extremally entangled two-qubit states, which can be realized in realistic matter-light scenarios.Comment: 4+3 pages, 6 figures, RevTeX4. Close to published version with appendi

    Time- and frequency-domain polariton interference

    Full text link
    We present experimental observations of interference between an atomic spin coherence and an optical field in a {\Lambda}-type gradient echo memory. The interference is mediated by a strong classical field that couples a weak probe field to the atomic coherence through a resonant Raman transition. Interference can be observed between a prepared spin coherence and another propagating optical field, or between multiple {\Lambda} transitions driving a single spin coherence. In principle, the interference in each scheme can yield a near unity visibility.Comment: 11 pages, 5 figure

    Structural change in multipartite entanglement sharing: a random matrix approach

    Full text link
    We study the typical entanglement properties of a system comprising two independent qubit environments interacting via a shuttling ancilla. The initial preparation of the environments is modeled using random-matrix techniques. The entanglement measure used in our study is then averaged over many histories of randomly prepared environmental states. Under a Heisenberg interaction model, the average entanglement between the ancilla and one of the environments remains constant, regardless of the preparation of the latter and the details of the interaction. We also show that, upon suitable kinematic and dynamical changes in the ancilla-environment subsystems, the entanglement-sharing structure undergoes abrupt modifications associated with a change in the multipartite entanglement class of the overall system's state. These results are invariant with respect to the randomized initial state of the environments.Comment: 10 pages, RevTeX4 (Minor typo's corrected. Closer to published version

    Development and application of a non-Gaussian atmospheric turbulence model for use in flight simulators

    Get PDF
    A method is described for generating time histories which model the frequency content and certain non-Gaussian probability characteristics of atmospheric turbulence including the large gusts and patchy nature of turbulence. Methods for time histories using either analog or digital computation are described. A STOL airplane was programmed into a 6-degree-of-freedom flight simulator, and turbulence time histories from several atmospheric turbulence models were introduced. The pilots' reactions are described

    A rapidly expanding Bose-Einstein condensate: an expanding universe in the lab

    Full text link
    We study the dynamics of a supersonically expanding ring-shaped Bose-Einstein condensate both experimentally and theoretically. The expansion redshifts long-wavelength excitations, as in an expanding universe. After expansion, energy in the radial mode leads to the production of bulk topological excitations -- solitons and vortices -- driving the production of a large number of azimuthal phonons and, at late times, causing stochastic persistent currents. These complex nonlinear dynamics, fueled by the energy stored coherently in one mode, are reminiscent of a type of "preheating" that may have taken place at the end of inflation.Comment: 12 pages, 7 figure

    Kinetic limitations of cooperativity based drug delivery systems

    Full text link
    We study theoretically a novel drug delivery system that utilizes the overexpression of certain proteins in cancerous cells for cell specific chemotherapy. The system consists of dendrimers conjugated with "keys" (ex: folic acid) which "key-lock" bind to particular cell membrane proteins (ex: folate receptor). The increased concentration of "locks" on the surface leads to a longer residence time for the dendrimer and greater incorporation into the cell. Cooperative binding of the nanocomplexes leads to an enhancement of cell specificity. However, both our theory and detailed analysis of in-vitro experiments indicate that the degree of cooperativity is kinetically limited. We demonstrate that cooperativity and hence the specificity to particular cell type can be increased by making the strength of individual bonds weaker, and suggest a particular implementation of this idea. The implications of the work for optimizing the design of drug delivery vehicles are discussed.Comment: 4 pages, 4 figures, v3: minor revision

    Collision and Diffusion in Microwave Breakdown of Nitrogen Gas in and around Microgaps

    Get PDF
    The microwave induced breakdown of N2 gas in microgaps was modeled using the collision frequency between electrons and neutral molecules and the effective electric field concept. Low pressure breakdown at the threshold electric field occurs outside the gap, but at high pressures it is found to occur inside the microgap with a large threshold breakdown electric field corresponding to a very large electron oscillation amplitude. Three distinct pressure regimes are apparent in the microgap breakdown: a low pressure multipactor branch, a mid-pressure Paschen branch, both of which occur in the space outside the microgap, and a high pressure diffusion-drift branch, which occurs inside the microgap. The Paschen and diffusion-drift branches are divided by a sharp transition and each separately fits the collision frequency model. There is evidence that considerable electron loss to the microgap faces accompanies the diffusion-drift branch in microgaps.Comment: 4 figure
    • …
    corecore