3,137 research outputs found

    Using Linked Digital Activity Schedules to Promote Cooperative Thematic Play

    Get PDF
    Previous research has shown that children with autism spectrum disorder (ASD) may struggle to engage in social play, which may impact their willingness to engage in contextually appropriate cooperative play (Koegel et al., 2014). Researchers suggest that activity schedules targeting cooperative play may increase appropriate play for children with ASD (Brodhead et al.,2014; Pellegrino, 2018). However, previous studies did not include opportunities for interactive choice responding or the implementation of generic picture cues during script training. We investigated the impact of a linked digital activity schedule on promoting cooperative thematic play in children with ASD. Six children with ASD engaged in cooperative thematic play scenarios with a peer while utilizing the linked digital activity schedule with time delay prompts. Results indicate that the implementation of the linked digital activity schedule with time delay prompts facilitated appropriate thematic play responding for all participants. However, the intervention did not produce significant evidence of increased novel vocal responses, higher affect, or consistent generalization of contextually appropriate cooperative play to the home setting. Overall, caregivers expressed support for the linked digital activity schedule teaching procedures. These findings suggest that linked digital activity schedules may be an effective approach to promoting cooperative thematic play in children with ASD. However, further research is needed to explore strategies for enhancing the efficacy of this approach for broader developmental outcomes

    Evolution Reinforces Cooperation with the Emergence of Self-Recognition Mechanisms: an empirical study of the Moran process for the iterated Prisoner's dilemma

    Full text link
    We present insights and empirical results from an extensive numerical study of the evolutionary dynamics of the iterated prisoner's dilemma. Fixation probabilities for Moran processes are obtained for all pairs of 164 different strategies including classics such as TitForTat, zero determinant strategies, and many more sophisticated strategies. Players with long memories and sophisticated behaviours outperform many strategies that perform well in a two player setting. Moreover we introduce several strategies trained with evolutionary algorithms to excel at the Moran process. These strategies are excellent invaders and resistors of invasion and in some cases naturally evolve handshaking mechanisms to resist invasion. The best invaders were those trained to maximize total payoff while the best resistors invoke handshake mechanisms. This suggests that while maximizing individual payoff can lead to the evolution of cooperation through invasion, the relatively weak invasion resistance of payoff maximizing strategies are not as evolutionarily stable as strategies employing handshake mechanisms

    Reinforcement Learning Produces Dominant Strategies for the Iterated Prisoner's Dilemma

    Get PDF
    We present tournament results and several powerful strategies for the Iterated Prisoner's Dilemma created using reinforcement learning techniques (evolutionary and particle swarm algorithms). These strategies are trained to perform well against a corpus of over 170 distinct opponents, including many well-known and classic strategies. All the trained strategies win standard tournaments against the total collection of other opponents. The trained strategies and one particular human made designed strategy are the top performers in noisy tournaments also

    Aging in lattice-gas models with constrained dynamics

    Full text link
    We investigate the aging behavior of lattice-gas models with constrained dynamics in which particle exchange with a reservoir is allowed. Such models provide a particularly simple interpretation of aging phenomena as a slow approach to criticality. They appear as the simplest three dimensional models exhibiting a glassy behavior similar to that of mean field (low temperature mode-coupling) models.Comment: 5 pages and 3 figures, REVTeX. Submitted to Europhysics Letter

    Aging, rejuvenation and memory effects in Ising and Heisenberg spin glasses

    Full text link
    We have compared aging phenomena in the Fe_{0.5}Mn_{0.5}TiO_3 Ising spin glass and in the CdCr_{1.7}In_{0.3}S_4 Heisenberg-like spin glass by means of low-frequency ac susceptibility measurements. At constant temperature, aging obeys the same `ωt\omega t scaling' in both samples as in other systems. Investigating the effect of temperature variations, we find that the Ising sample exhibits rejuvenation and memory effects which are qualitatively similar to those found in other spin glasses, indicating that the existence of these phenomena does not depend on the dimensionality of the spins. However, systematic temperature cycling experiments on both samples show important quantitative differences. In the Ising sample, the contribution of aging at low temperature to aging at a slightly higher temperature is much larger than expected from thermal slowing down. This is at variance with the behaviour observed until now in other spin glasses, which show the opposite trend of a free-energy barrier growth as the temperature is decreased. We discuss these results in terms of a strongly renormalized microscopic attempt time for thermal activation, and estimate the corresponding values of the barrier exponent ψ\psi introduced in the scaling theories.Comment: 8 pages, including 6 figure

    Time decay of the remanent magnetization in the ±J\pm J spin glass model at T=0

    Full text link
    Using the zero-temperature Metropolis dynamics, the time decay of the remanent magnetization in the ±J\pm J Edward-Anderson spin glass model with a uniform random distribution of ferromagnetic and antiferromagnetic interactions has been investigated. Starting from the saturation, the magnetization per spin mm reveals a slow decrease with time, which can be approximated by a power law:m(t)=m+(ta0)a1m(t)=m_{\infty}+ ({t\over a_{0}})^{a_{1}}, a1<0a_{1} < 0. Moreover, its relaxation does not lead it into one of the ground states, and therefore the system is trapped in metastable isoenergetic microstates remaining magnetized. Such behaviour is discussed in terms of a random walk the system performs on its available configuration space.Comment: 9 pages, 3 figure

    Diffusive and ballistic current spin-polarization in magnetron-sputtered L1o-ordered epitaxial FePt

    Full text link
    We report on the structural, magnetic, and electron transport properties of a L1o-ordered epitaxial iron-platinum alloy layer fabricated by magnetron-sputtering on a MgO(001) substrate. The film studied displayed a long range chemical order parameter of S~0.90, and hence has a very strong perpendicular magnetic anisotropy. In the diffusive electron transport regime, for temperatures ranging from 2 K to 258 K, we found hysteresis in the magnetoresistance mainly due to electron scattering from magnetic domain walls. At 2 K, we observed an overall domain wall magnetoresistance of about 0.5 %. By evaluating the spin current asymmetry alpha = sigma_up / sigma_down, we were able to estimate the diffusive spin current polarization. At all temperatures ranging from 2 K to 258 K, we found a diffusive spin current polarization of > 80%. To study the ballistic transport regime, we have performed point-contact Andreev-reflection measurements at 4.2 K. We obtained a value for the ballistic current spin polarization of ~42% (which compares very well with that of a polycrystalline thin film of elemental Fe). We attribute the discrepancy to a difference in the characteristic scattering times for oppositely spin-polarized electrons, such scattering times influencing the diffusive but not the ballistic current spin polarization.Comment: 22 pages, 13 figure

    Creating and Sharing Digital Instructional Activities: A Practical Tutorial

    Get PDF
    BCBAs may encounter situations, such as the current COVID-19 pandemic, that preclude them from providing traditional in-person ABA services to clients. When conditions prevent BCBAs and behavior technicians from working directly with clients, digital instructional activities designed by BCBAs and delivered via a computer or tablet may be a viable substitute. Google applications, including Google Slides, Google Forms, and Google Classroom, can be particularly useful for creating and sharing digital instructional activities. In the current paper, we provide task analyses for utilizing basic Google Slides functions, developing independent instructional activities, developing caregiver-supported instructional activities, and sharing activities with clients and caregivers. We also provide practical recommendations for implementing digital instructional activities with clients and caregivers
    corecore