16 research outputs found

    Application of density functional theory in the synthesis of electroactive polymers

    Get PDF
    A wide range of conjugated organic compounds undergo anodic electropolymerisation to produce polymers of high conductivity. However, electrooxidation does not always result in the formation of electroactive materials, since some reactions produce insulating films or soluble oligomers. Density functional theory (DFT) has been used to predict the outcome of electropolymerisation reactions by calculating the unpaired electron π-spin density distribution of monomeric radical cations, in order to determine coupling positions in the resultant polymers. π-Spin densities calculated for pyrrole, thiophene and (E)-stilbene are found to be in good agreement with experimental values. DFT has been used to investigate the low conductivity and redox inactivity of poly[(E)-3-styrylthiophenes] and poly[(E)-2-styrylheterocycles]. High positive spin densities at the alkene spacer linkage in the corresponding monomeric radical cations were found, suggesting crosslinking of the polymers via the double bond. In contrast, electroactive polymers of improved conductivity are formed from the electropolymerisation of some (Z)-2-α,β-diarylacrylonitriles. For these monomers, DFT calculations show the positions of highest spin density to be located at the α-positions of the heterocyclic rings, suggesting the presence of α,α′-linked monomeric couplings necessary for electroactivity

    Synthesis and gas sensing properties of poly[tetra(pyrrol-1-yl)silane]

    Get PDF
    Conducting polymers such as polypyrrole and polythiophene offer a new approach to the design of modified electrodes and sensors. In the current work, the electrochemical and chemical polymerisation of tetra(pyrrol-1-yl)silane is described. Resultant polymers with different anions have been characterised by electrochemical methods, XPS and microanalysis. Molecular geometry calculations suggest that both inter- and intra-molecular couplings are present in the film. Crosslinking of the polymeric matrix via β-linkages will result in a three-dimensional structure with a concomitant reduction in the degree of conjugation, accounting for the low film conductivity (σ ca. 10-6 S cm-1). Preliminary results show that poly[tetra(pyrrol-1-yl)silane] is a promising material for the fabrication of gas sensors. It is unexpectedly sensitive to ammonia and trimethylamine gas when compared with polypyrrole and poly(N-methylpyrrole) prepared in a similar fashion

    Macrophage origin limits functional plasticity in helminth-bacterial co-infection

    Get PDF
    Rapid reprogramming of the macrophage activation phenotype is considered important in the defense against consecutive infection with diverse infectious agents. However, in the setting of persistent, chronic infection the functional importance of macrophage-intrinsic adaptation to changing environments vs. recruitment of new macrophages remains unclear. Here we show that resident peritoneal macrophages expanded by infection with the nematode Heligmosomoides polygyrus bakeri altered their activation phenotype in response to infection with Salmonella enterica ser. Typhimurium in vitro and in vivo. The nematode-expanded resident F4/80high macrophages efficiently upregulated bacterial induced effector molecules (e.g. MHC-II, NOS2) similarly to newly recruited monocyte-derived macrophages. Nonetheless, recruitment of blood monocyte-derived macrophages to Salmonella infection occurred with equal magnitude in co-infected animals and caused displacement of the nematode-expanded, tissue resident-derived macrophages from the peritoneal cavity. Global gene expression analysis revealed that although nematode-expanded resident F4/80high macrophages made an anti-bacterial response, this was muted as compared to newly recruited F4/80low macrophages. However, the F4/80high macrophages adopted unique functional characteristics that included enhanced neutrophil-stimulating chemokine production. Thus, our data provide important evidence that plastic adaptation of MΦ activation does occur in vivo, but that cellular plasticity is outweighed by functional capabilities specific to the tissue origin of the cell

    pH Measurements

    No full text

    The effect of operational parameters on the performance of a bipolar trickle tower reactor

    No full text
    A bipolar trickle tower reactor (BTTR) (of 7.9 cm internal diameter and 75 cm length containing 57 layers, each layer having 30 carbon Raschig rings, each of 1.25 cm outside diameter) has been studied under a range of operational conditions. The batch recycle mode of operation has been used for the removal of Cu(II) ions (at an initial concentration of 50-200 ppm) from an acid sulfate solution (typically 3000 cm3) at 295 K. Non-ideal flow and Peclet number values have been considered to establish the degree of deviation from ideal reactor flow models. Operational variables included the potential difference per layer (1.0-3.0 V), volumetric flow rate (8.3-50 cm3 s-1) and the effect of H2SO4 concentration (which increased conductivity and lowered pH) in the electrolyte. The reactor has been shown to be best suited to the treatment of a moderately high reactant concentration (eg 100-200 ppm) and low electrolyte conductivity. The final concentration can be as low as a few parts per million but the performance of the reactor (as judged by the current efficiency and the rate of concentration decay) markedly decreased as the dissolved metal ion concentration fell

    Electrochemical removal of metal ions from aqueous solution: a student workshop

    No full text
    An environmental electrochemistry workshop program on metal ion removal is described. The program was designed for undergraduate students in chemistry, chemical engineering or environmental science and teaches environmental electrochemistry through a combination of hands-on experiments, understanding of research concepts, completion of project reports and in class discussion. The students are encouraged to quantitatively describe the performance of the electrochemical cells (containing 2-D and 3-D carbon cathodes) and to consider the advantages and shortcomings of electrochemical routes to environmental treatment
    corecore