1,999 research outputs found

    Direct Activation of RhoA by Reactive Oxygen Species Requires a Redox-Sensitive Motif

    Get PDF
    BACKGROUND:Rho family GTPases are critical regulators of the cytoskeleton and affect cell migration, cell-cell adhesion, and cell-matrix adhesion. As with all GTPases, their activity is determined by their guanine nucleotide-bound state. Understanding how Rho proteins are activated and inactivated has largely focused on regulatory proteins such as guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). However, recent in vitro studies have indicated that GTPases may also be directly regulated by redox agents. We hypothesized that this redox-based mechanism occurs in cells and affects cytoskeletal dynamics, and in this report we conclude this is indeed a novel mechanism of regulating the GTPase RhoA. METHODOLOGY/PRINCIPAL FINDINGS:In this report, we show that RhoA can be directly activated by reactive oxygen species (ROS) in cells, and that this requires two critical cysteine residues located in a unique redox-sensitive motif within the phosphoryl binding loop. First, we show that ROS can reversibly activate RhoA and induce stress fiber formation, a well characterized readout of RhoA activity. To determine the role of cysteine residues in this mechanism of regulation, we generated cysteine to alanine RhoA mutants. Mutation of these cysteines abolishes ROS-mediated activation and stress fiber formation, indicating that these residues are critical for redox-regulation of RhoA. Importantly, these mutants maintain the ability to be activated by GEFs. CONCLUSIONS/SIGNIFICANCE:Our findings identify a novel mechanism for the regulation of RhoA in cells by ROS, which is independent of classical regulatory proteins. This mechanism of regulation may be particularly relevant in pathological conditions where ROS are generated and the cellular redox-balance altered, such as in asthma and ischemia-reperfusion injury

    Mechanism of Redox-mediated Guanine Nucleotide Exchange on Redox-active Rho GTPases

    Get PDF
    Rho GTPases regulate multiple cellular processes including actin cytoskeletal rearrangements, transcriptional regulation, and oxidant production. The studies described herein demonstrate that small molecule redox agents, in addition to protein regulatory factors, can regulate the activity of redox-active Rho GTPases. A novel (GXXXXGK(S/T)C) motif, conserved in a number of Rho GTPases, appears critical for redox-mediated guanine nucleotide dissociation in vitro. A detailed molecular mechanism for redox regulation of GXXXXGK(S/T)C motif-containing Rho GTPases is proposed

    Superoxide Anion Radical Modulates the Activity of Ras and Ras-related GTPases by a Radical-based Mechanism Similar to That of Nitric Oxide

    Get PDF
    Ras GTPases cycle between inactive GDP-bound and active GTP-bound states to modulate a diverse array of processes involved in cellular growth control. The activity of Ras is up-regulated by cellular agents, including both protein (guanine nucleotide exchange factors) and redox-active agents (nitric oxide (NO) and superoxide anion radical (O2*). We have recently elucidated the mechanism by which NO promotes guanine nucleotide dissociation of redox-active NKCD motif-containing Ras and Ras-related GTPases. In this study, we show that guanine nucleotide dissociation is enhanced upon exposure of the redox-active GTPases, Ras and Rap1A, to O2* and provide evidence for the efficient guanine nucleotide reassociation in the presence of the radical quenching agent ascorbate to complete guanine nucleotide exchange. In vivo, guanine nucleotide reassociation is necessary to populate Ras in its biologically active GTP-bound form after the dissociation of GDP. We further show that treatment of the redox-active GTPases with O2* releases GDP in form of an unstable the oxygenated GDP adduct, putatively assigned as 5-oxo-GDP. 5-Oxo-GDP was not produced from either the C118S or the F28L Ras variants upon the treatment of O2*, supporting the involvement of residues Cys118 and Phe28 in O2*-mediated Ras guanine nucleotide dissociation. These results indicate that the mechanism of O2*-mediated Ras guanine nucleotide dissociation is similar to that of NO/O2-mediated Ras guanine nucleotide dissociation

    Regulation of Ras proteins by reactive nitrogen species

    Get PDF
    Ras GTPases have been a subject of intense investigation since the early-80’s, when single point mutations in Ras were shown to cause deregulated cell growth control. Subsequently, Ras was identified as the most prevalent oncogene found in human cancer. Ras proteins regulate a host of pathways involved in cell growth, differentiation, and apoptosis by cycling between inactive GDP-bound and active GTP-bound states. Regulation of Ras activity is controlled by cellular factors that alter guanine nucleotide cycling. Oncogenic mutations prevent protein regulatory factors from down-regulating Ras activity, thereby maintaining Ras in a chronically activated state. The central dogma in the field is that protein modulatory factors are the primary regulators of Ras activity. Since the mid-90’s, however, evidence has accumulated that small molecule reactive nitrogen species (RNS) can also influence Ras guanine nucleotide cycling. Herein, we review the basic chemistry behind RNS formation and discuss the mechanism through which various RNS enhance nucleotide exchange in Ras proteins. In addition, we present studies that demonstrate the physiological relevance of RNS-mediated Ras activation within the context of immune system function, brain function, and cancer development. We also highlight future directions and experimental methods that may enhance our ability to detect RNS-mediated activation in cell cultures and in vivo. The development of such methods may ultimately pave new directions for detecting and elucidating how Ras proteins are regulated by redox species, as well as for targeting redox-activated Ras in cancer and other disease states

    Multiple paxillin binding sites regulate FAK function

    Get PDF
    Abstract Background FAK localization to focal adhesions is essential for its activation and function. Localization of FAK is mediated through the C-terminal focal adhesion targeting (FAT) domain. Recent structural analyses have revealed two paxillin-binding sites in the FAT domain of FAK. To define the role of paxillin binding to each site on FAK, point mutations have been engineered to specifically disrupt paxillin binding to each docking site on the FAT domain of FAK individually or in combination. Results These mutants have been characterized and reveal an important role for paxillin binding in FAK subcellular localization and signaling. One paxillin-binding site (comprised of α-helices 1 and 4 of the FAT domain) plays a more prominent role in localization than the other. Mutation of either paxillin-binding site has similar effects on FAK activation and downstream signaling. However, the sites aren't strictly redundant as each mutant exhibits phosphorylation/signaling defects distinct from wild type FAK and a mutant completely defective for paxillin binding. Conclusion The studies demonstrate that the two paxillin-binding sites of FAK are not redundant and that both sites are required for FAK function

    The Structural Basis of Actin Organization by Vinculin and Metavinculin

    Get PDF
    Vinculin is an essential adhesion protein that links membrane-bound integrin and cadherin receptors through their intracellular binding partners to filamentous actin, facilitating mechanotransduction. Here we present an 8.5-Ã…-resolution cryo-electron microscopy reconstruction and pseudo-atomic model of the vinculin tail (Vt) domain bound to F-actin. Upon actin engagement, the N-terminal "strap" and helix 1 are displaced from the Vt helical bundle to mediate actin bundling. We find that an analogous conformational change also occurs in the H1' helix of the tail domain of metavinculin (MVt) upon actin binding, a muscle-specific splice isoform that suppresses actin bundling by Vt. These data support a model in which metavinculin tunes the actin bundling activity of vinculin in a tissue-specific manner, providing a mechanistic framework for understanding metavinculin mutations associated with hereditary cardiomyopathies

    Structural Characterization of the Interactions between Palladin and α-Actinin

    Get PDF
    The interaction between α-actinin and palladin, two actin-crosslinking proteins, is essential for proper bidirectional targeting of these proteins. As a first step toward understanding the role of this complex in organizing cytoskeletal actin, we have characterized binding interactions between the EF hand domain of α-actinin (Act-EF34) and peptides derived from palladin, and generated a NMR-derived structural model for the Act-EF34/palladin peptide complex. The critical binding site residues are similar to an actinin binding motif previously suggested for the complex between Act-EF34 and titin Z-repeats. The structure-based model of the Act-EF34/palladin peptide complex expands our understanding of binding specificity between the scaffold protein α-actinin and various ligands, which appears to require an α-helical motif containing four hydrophobic residues, common to many α–actinin ligands. We also provide evidence that the Family-X mutation in palladin, associated with a highly penetrant form of pancreatic cancer, does not interfere with α-actinin binding

    Redox Regulation of Ras and Rho GTPases: Mechanism and Function

    Get PDF
    Significance: Oxidation and reduction events are critical to physiological and pathological processes and are highly regulated. Herein, we present evidence for the role of Ras and Rho GTPases in controlling these events and the unique underlying mechanisms. Evidence for redox regulation of Ras GTPases that contain a redox-sensitive cysteine (X) in the conserved NKXD motif is presented, and a growing consensus supports regulation by a thiyl radical-mediated oxidation mechanism. We also discuss the debate within the literature regarding whether 2e− oxidation mechanisms also regulate Ras GTPase activity. Recent Advances: We examine the increasing in vitro and cell-based data supporting oxidant-mediated activation of Rho GTPases that contain a redox-sensitive cysteine at the end of the conserved phosphoryl-binding loop (p-loop) motif (GXXXXG[S/T]C). While this motif is distinct from Ras, these data suggest a similar 1e− oxidation-mediated activation mechanism. Critical Issues: We also review the data showing that the unique p-loop placement of the redox-sensitive cysteine in Rho GTPases supports activation by 2e− cysteine oxidation. Finally, we examine the role that Ras and Rho GTPases play in controlling key oxidant-regulating enzymes in the cell, and we speculate on a feedback mechanism. Future Directions: Given that these GTPases and redox-regulating enzymes are involved in multiple physiological and pathological processes, we discuss future experiments that may clarify the interplay between them. Antioxid. Redox Signal. 18, 250–258
    • …
    corecore