13,926 research outputs found

    Derivation of SPH equations in a moving referential coordinate system

    Get PDF
    The conventional SPH method uses kernel interpolation to derive the spatial semi-discretisation of the governing equations. These equations, derived using a straight application of the kernel interpolation method, are not used in practice. Instead the equations, commonly used in SPH codes, are heuristically modified to enforce symmetry and local conservation properties. This paper revisits the process of deriving these semi-discrete SPH equations. It is shown that by using the assumption of a moving referential coordinate system and moving control volume, instead of the fixed referential coordinate system and fixed control volume used in the conventional SPH method, a set of new semi- discrete equations can be rigorously derived. The new forms of semi-discrete equations are similar to the SPH equations used in practice. It is shown through numerical examples that the new rigorously derived equations give similar results to those obtained using the conventional SPH equations

    CD11b+ Migratory Dendritic Cells Mediate CD8 T Cell Cross-Priming and Cutaneous Imprinting after Topical Immunization

    Get PDF
    Topical antigen application is a focus of current vaccine research. This immunization route mimics natural antigen exposure across a barrier tissue and generates T cells imprinted for skin-selective homing. Soluble antigens introduced through this route require cross-presentation by DC to generate CD8 T cell responses. Here we have explored the relative contribution of various skin-derived DC subsets to cross-priming and skin-selective imprinting. In our model, DC acquire soluble Ag in vivo from immunized murine skin for cross-presentation to naïve CD8 T cells ex vivo. We find CD11b+ migratory DC to be the relevant cross-priming DC in this model. Both Langerin+ and Langerin- CD11b+ migratory DC can cross-present antigen in our system, but only the Langerin+ subset can induce expression of the skin-selective addressin E-selectin ligand. Thus, the CD11b+ Langerin+ migratory DC population, comprised primarily of Langerhans cells, both cross-primes naïve CD8 T cells and imprints them with skin-homing capabilities

    Big Opportunities in Access to Small Science Data

    Get PDF
    A distributed infrastructure that would enable those who wish to do so to contribute their scientific or technical data to a universal digital commons could allow such data to be more readily preserved and accessible among disciplinary domains. Five critical issues that must be addressed in developing an efficient and effective data commons infrastructure are described. We conclude that creation of a distributed infrastructure meeting the critical criteria and deployable throughout the networked university library community is practically achievable

    Maintenance of ONC Terminology for i2b2 Metadata

    Get PDF
    ONC terminologies are constantly adding new content and deactivating existing codes. The University of Nebraska Medical Center (UNMC) deploys three primary code sets that require regular updating to support research: SNOMED CT, RXNORM / NDC, and LOINC. A problem across the i2b2 community is keeping these terminologies up-to-date and loading them into i2b2 for timely analysis of EHR data. We have developed tool kits for rapid deployment of SNOMED CT metadata and will be extending the work to RXNORM/NDC and LOINC.https://digitalcommons.unmc.edu/com_emerg_pres/1001/thumbnail.jp

    Solar sail formation flying for deep-space remote sensing

    Get PDF
    In this paper we consider how 'near' term solar sails can be used in formation above the ecliptic plane to provide platforms for accurate and continuous remote sensing of the polar regions of the Earth. The dynamics of the solar sail elliptical restricted three-body problem (ERTBP) are exploited for formation flying by identifying a family of periodic orbits above the ecliptic plane. Moreover, we find a family of 1 year periodic orbits where each orbit corresponds to a unique solar sail orientation using a numerical continuation method. It is found through a number of example numerical simulations that this family of orbits can be used for solar sail formation flying. Furthermore, it is illustrated numerically that Solar Sails can provide stable formation keeping platforms that are robust to injection errors. In addition practical trajectories that pass close to the Earth and wind onto these periodic orbits above the ecliptic are identified

    Polls and elections: Is Loyalty a Powerful Thing? Republican Senate Campaign Strategy and Trump Coattails in the 2016 Election

    Get PDF
    Presidential candidates provide a boost to their congressional candidate counterparts, in which congressional candidates should ride the proverbial coattails into office (Campbell and Sumners 1990; Stewart 1989). The 2016 election, however, provides an instance in which the presidential coattails were less than desirable. In this article, we argue that state politics determines the optimal strategy for how candidates should position themselves vis‐à‐vis a controversial presidential candidate. Based on our findings, voters rewarded candidates at varying levels for distancing themselves from then candidate Trump. Specifically, the disloyal strategy, in which candidates completely disavowed Trump, worked best in swing states and among Democrats, liberals, and Clinton voters. The ambiguous strategy, in which candidates took an unclear position on Trump, was less effective, but still received gains in appeal among independents and liberals

    ErbB2 enhances mammary tumorigenesis, oncogene-independent recurrence and metastasis in a model of IGF-IR-mediated mammary tumorigenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The type I insulin-like growth factor receptor (IGF-IR) and ErbB2 (Her-2) are receptor tyrosine kinases implicated in human breast cancer. Both proteins are currently the subject of targeted therapeutics that are used in the treatment of breast cancer or which are in clinical trials. The focus of this study was to utilize our inducible model of IGF-IR overexpression to explore the interaction of these two potent oncogenes.</p> <p>Results</p> <p>ErbB2 was overexpressed in our RM11A cell line, a murine tumor cell line that overexpresses human IGF-IR in an inducible manner. ErbB2 conferred an accelerated tumor onset and increased tumor incidence after injection of RM11A cells into the mammary glands of syngeneic wild type mice. This was associated with increased proliferation immediately after tumor cell colonization of the mammary gland; however, this effect was lost after tumor establishment. ErbB2 overexpression also impaired the regression of established RM11A tumors following IGF-IR downregulation and enhanced their metastatic potential.</p> <p>Conclusion</p> <p>This study has revealed that even in the presence of vast IGF-IR overexpression, a modest increase in ErbB2 can augment tumor establishment <it>in vivo</it>, mediate resistance to IGF-IR downregulation and facilitate metastasis. This supports the growing evidence suggesting a possible advantage of using IGF-IR and ErbB2-directed therapies concurrently in the treatment of breast cancer.</p

    Carbon Sequestration by Reforesting Legacy Grasslands on Coal Mining Sites

    Get PDF
    Future carbon management during energy production will rely on carbon capture and sequestration technology and carbon sequestration methods for offsetting non-capturable losses. The present study quantifies carbon sequestration via reforestation using measurements and modeling for recent and legacy surface coal mining grasslands that are re-restored through tree planting. This paper focuses on a case study of legacy coal mining sites in the southern Appalachia the United States. This five million-hectare region has a surface mining footprint of approximately 12% of the land area, and the reclamation method was primarily grassland. The results of the soil carbon sequestration rates for restored forest soils approach 2.0 MgC ha−1 y−1 initially and average 1.0 MgC ha−1 y−1 for the first fifty years after reclamation. Plant, coarse root and litter carbon sequestration rates were 2.8 MgC ha−1 y−1 with plant carbon estimated to equilibrate to 110 MgC ha−1 after forty years. Plant, root and litter carbon stocks are projected to equilibrate at an order of magnitude greater carbon storage than the existing conditions, highlighting the net carbon gain. Reforestation of legacy mine sites shows carbon sequestration potential several orders of magnitude greater than typical land sequestration strategies for carbon offsets. Projections of future scenarios provide results that show the study region could be carbon neutral or a small sink if widespread reforesting during reclamation was implemented, which is contrary to the business-as-usual projections that result in a large amount of carbon being released to the atmosphere in this region
    corecore