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Abstract

The conventional SPH method uses kernel interpolation to derive the spatial semi-discretisation of the 

governing equations.  These equations, derived using a straight application of the kernel interpolation method,

are not used in practice.  Instead the equations, commonly used in SPH codes, are heuristically modified to 

enforce symmetry and local conservation properties.  This paper revisits the process of deriving these semi-

discrete SPH equations.  It is shown that by using the assumption of a moving referential coordinate system 

and moving control volume, instead of the fixed referential coordinate system and fixed control volume used 

in the conventional SPH method, a set of new semi-discrete equations can be rigorously derived.  The new 

forms of semi-discrete equations are similar to the SPH equations used in practice.  It is shown through 

numerical examples that the new rigorously derived equations give similar results to those obtained using the 

conventional SPH equations.  

1 Introduction

The Smoothed Particle Hydrodynamics (SPH) method was first developed for the simulation of 

astrophysics problems [1], with the significant development being a method for the calculation of derivatives 

without a mesh.  Review papers by Benz [2] and Monaghan [3] provide a thorough description of the 

development of the SPH method.  Another important stage in the development of SPH was its extension to 

solid mechanics by Libersky and co-workers [4].  In the conventional SPH method the time-dependent partial 

differential equations, which describe conservation of mass, momentum and energy and together with a 

constitutive equation describe the motion of a continuum, are discretised in space using kernel interpolation.  

http://ees.elsevier.com/cmame/download.aspx?id=89826&guid=c5aeb067-1d53-4234-baf2-a2f096a1db06&scheme=1
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2

The approaches taken to derive the semi-discrete SPH equations can be divided into two main groups,

namely variationally based and strong form based [1-6].  However, the equations derived using either approach

are not in the form that is usually given in the literature. In the standard derivations, in order to ensure that the 

semi-discretised equations maintain conservation properties locally, additional terms are introduced into the 

conservation of mass equation and the conservation of linear momentum equation.  The addition of these terms 

within the conservation equations has a heuristic nature.  For instance in [6] the divergence of the velocity at 

particle I is given in terms of the values at the neighbouring J particles (equation 4 in reference [6]) as shown 

below.

 J
I J I IJ

J J

m
W


   v v v , (1.1)

In [6] it is noted that the term Iv has been artificially added in order to ensure that the divergence vanishes 

for a uniform velocity distribution.  Another example is the approach taken in [7] where instead of taking the 

direct approximation of a derivative of a function, as given by equation (1.2), the SPH form of the identity 

(equation 2.12 in [7]) shown below as equation (1.3) is used.  

J IJI
J

J J

m Wf
f

x x



  , (1.2)

1 ( )f f
f

x x x

          
. (1.3)

This equation is a consequence of the following identity f f   , where  and f are arbitrary 

differentiable functions of x .  This identity when differentiated yields:

 f f
f

x x x

   
  

  
(1.4)

Which can be rearranged to give equation (1.3).  For 1  equation (1.3) gives:

 J IJI
J I

JI J I

m Wf
f f

x x


 

   , (1.5)
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and for    equation (1.3) gives

 1 IJI
J J I

JI I I

Wf
m f f

x x


 

   . (1.6)

From equations (1.5) and (1.6) it is obvious that the derivative approximations depend on the choice of 

function .  Substituting (1.6) into (1.5) gives:  

   1J IJ IJ
J I J J I

J JJ I I I

m W W
f f m f f

x x

 
  

     (1.7)

However this equality only holds if the following is true:

 1 1
0IJ

J J I
J J I I

W
m f f

x

  
      

 (1.8)

This condition states that the two approximations give the same results. For instance, in the case of arbitrary f

and constant density ( J I   ) or constant f and varying    This approach to the derivation of the SPH 

equations shows the arbitrariness related to the choice of function  which has not yet been studied.  The 

forms of the equations (1.5) and (1.6) derived in this way have been successfully applied to a range of problems 

in continuum mechanics, and so have become widely accepted.  The derivation of the conventional SPH forms 

of the conservation equations is further discussed in Section 3.  

The process of SPH discretisation of conservation equations is revisited in this paper with the intention 

of providing a rigorous derivation of the SPH equations.  This provides a clear interpretation of the terms 

introduced to provide Galilean invariance.  This study shows that this can be achieved through derivation of the 

conservation equations in a moving coordinate frame (for a moving control volume).  The time-dependent 

partial differential equations are semi-discretised to time dependent ordinary differential equations using the 

following steps, that are commonly followed in SPH:  

 multiplying both sides of the equation with a kernel function 

 integrating all the products over the entire domain 

 linearising the integrals if needed 
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4

 Integrating each term using the technique of integration by parts. This operation moves spatial 

derivatives from operating on the field variables to operating on the interpolation kernel 

 disregarding boundary terms 

 converting all the integrals into a summation over a set of discrete particles.

2 Kernel Approximation 

2.1 Overview  

The SPH method is based on a kernel interpolation which in its discrete form uses distributed 

interpolation points, with no fixed connectivity, to approximate field variables and their spatial derivatives.  In 

SPH, spatial derivatives are calculated by analytical differentiation of the kernel function.  To illustrate this,

consider a continuum represented by a set of interacting particles (Figure 1).

Each particle I interacts with all other particles that are within a given distance, these particles are 

known as neighbour particles. Parameter h (the smoothing length) controls this distance, all particles within kh

of the I particle are neighbour particles, for the widely used B-spline kernel k = 2.  Along with the inter-particle 

distance, h determines the spatial resolution of the calculations.  The interaction between I and a neighbouring 

particle is weighted by the smoothing (or kernel) function ( ' , )W hx x , where x’ is the coordinate of the 

neighbour particle and x the coordinate of the I particle.  Using this principle, the value of a continuous 

function can be approximated at any location within the domain based on known values at neighbouring

particles J.  

In the conventional SPH derivation of the semi-discretised form of the conservation equations, the

referential coordinate system, in which the integration over the support is performed, is assumed to be fixed in 

space ( x = constant, the Eulerian coordinate system).  In other words, location of the support is determined by 

the current position of particle I and does not change over a given time step in the integration process. This is

represented graphically in Figure 2. 

2.2 The conventional SPH discretisation method

A vector function f can be approximated using the conventional kernel interpolation as [8]:



 

 

 

ACCEPTED MANUSCRIPT 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

5

     ' ' ,f f W h d


  x x x x (2.1)

Where W is the kernel function, x is a parameter, 'x is variable, h is the smoothing length and  is 

the kernel support centred at a point x.

The kernel function must satisfy the following requirements:  

( ' , ) 0W h x x when ' kh x x (i.e. the Kernel should have compact support); k is a scale 

factor that determines size of the smoothing function support.  

( ' , ) 0W h x x in the compact support, i.e. where ' kh x x   

The integral of W over the complete support is unity:

 ' , 1W h d


   x x (2.2)

In the limit W equals the Dirac delta function as h approaches zero.  

   
0

lim ' , '
h

W h 


  x x x x (2.3)

Due to the symmetric nature of the kernel function, the following expression should hold:

0
),2(),0(









xx

hhWhW (2.4)

The last requirement is very important for the treatment of boundary conditions.  This property makes 

the derivative of approximations non-collocational, meaning that the value of the function at the location for 

which the derivative is being calculated, does not contribute to the approximation.  Note that the kernel has to 

be differentiable at least once, since the kernel approximation allows spatial gradients to be determined from 

the values of the function and the first spatial derivative of the kernel, rather than the derivatives of the function 

itself.  In addition, the derivative should be continuous to prevent large fluctuations in the values of the field 

variables of particle I.  

The second step is to convert the kernel integrals in equation (2.1) into a volume weighted sum. This is 

known as particle approximation and usually stated as:  
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I I I

N
J

J IJ
J

J

f f f

f W h d

m
f W

x x

x x x

x

(2.5)

In the previous equation, the subscript I and J denote particle number, 
Jm and 

J the mass and the 

density of particle J , N the number of neighbours of particle I (number of particles that interact with particle I,

i.e. the support of the kernel) and  ,IJ J IW W h x x .

Note that in the step of integral discretisation given by equation (2.5), the domain Ω of integration in the 

referential space (continuous integral form) is substituted by the SPH approximation 
1

/
N

J J
J

m 

 to the volume 

of material, which is within the referential domain of integration at that moment in time (sum form).  The 

difference between the two domains of integration, i.e. 
1

/
N

J J
J

m 


   , represents one of the error sources in 

the process of numerical integration.  This error is especially pronounced close to boundaries where the kernel 

support is incomplete.  Due to the deformation process particles may enter and leave the neighbourhood of 

particle I, which results in a change to the approximation of the domain Ω.  

A more rigorous discretisation of the spatial integral, where the neighbourhood of particle I is 

fixed, is given by equation (2.6). Here the integral over the initial referential domain is mapped onto the 

corresponding material domain and then discretised (converted into the sum form).  
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I I I

R R

R R
ref ref

N
R R J
ref J IJ ref J IJ

J
J

f f f f W d

f W Jd

f W d

m
f W

x x x x h

X X h

x x h

x x h

(2.6)

Where: R R x F X , 0h h F and detJ  F .  

The deformation of the material domain of integration is illustrated in Figure 3. Note that at time 0t

the referential and the material kernel supports are identical, and consequently there is no difference between 
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7

the chequered (referential kernel support) and white circle (material kernel support).  Whereas, at time t = t1 the 

two domains differ due to deformation of the material kernel support.  The following mappings define the link 

between volume of the referential and current material kernel support as 
0det  F and referential and 

current h as 0 h F h . 

This type of discretisation corresponds to, what Belytschko [9] calls the Lagrangian kernel, where the 

neighbourhood of an I particle is fixed during continuum motion and interpolation is always performed with 

respect to the initial configuration.  It is obvious that in this case
0h is defined for a pair of particles and 

remains fixed throughout a calculation.  The derivative of the kernel ( ' , )W hx x with respect to x and x’ 

differs only in its sign.  In the discrete form the derivative of the kernel taken with respect to x and x’ are 

equivalent to having the kernel centred at the I particle (derivative with respect to x) or particle J (derivative 

with respect to x’).  

3 Conventional SPH Discretisation of the Equations of Conservation  

In SPH, a time-dependent partial differential equation is converted into a time dependent ordinary 

differential equation by following the steps given in the introduction.  In this section the conventional

discretisation of the SPH equations is presented, this will allow comparison with the derivation of the equations 

in a moving referential frame presented in the next section.

3.1 Conservation of Mass  

The conservation of mass equation is to be considered first.  Starting from the partial differential 

equation  

D

Dt

    v (3.1)

Where the material time derivative is taken in a fixed reference frame, Figure 2.  

The first steps are to multiply both sides of the equation by the smoothing function, then integrate over 

the domain of particle I. After linearization, following Libersky [10], of the resulting integral one obtains:  
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( ' , ) ( ' , )I
x

D
W h d W h d

Dt

 
 

        x x x x v (3.2)

Integrating by parts and dropping boundary terms yields:

( ' , ) ( ' , )I
I

x

D D
W h d W h d

Dt Dt

  
 

       x x v x x (3.3)

Converting the integral into a discrete sum over the set of neighbour particles then gives:

JI
I J IJ

J J

mD
W

Dt

 


  v (3.4)

This however, is not the usual form of the discretised SPH equation often found in literature [1, 2]. In 

order to maintain Galilean invariance (in the case of the conservation of mass equation) and to ensure the 

satisfaction of Newton’s third law (in the case of the momentum equation), an additional term is introduced 

into Equation (3.2). This term has the following form:  

( ' , ) J
I I I I IJ

J J

m
W h d W 



      v x x v (3.5)

Note that this term in its continuous form is equal to zero due to the symmetric nature of the smoothing 

function W.  Subtracting this expression above from the right hand side of equation (3.4) yields  

  J
I I J I

J J

m
W 


   v v (3.6)

3.2 Conservation of Momentum  

The momentum equation in the spatial form, neglecting surface distributed forces and body forces is:  

    D

t Dt


  


    


v v

v v (3.7)

Multiplying both sides by the smoothing function and integrating over the domain yields:

( ' , ) ( ' , )
D

W h d W h d
Dt


 

 
     

v
x x x x (3.8)

Integration by parts and dropping boundary terms yields  
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1
( ' , )

D
W h d

Dt




    
v

x x (3.9)

The integral is then approximated by a particle sum: 

J JI
IJ

J J J

mD
W

Dt


 

  v (3.10)

To ensure Newton’s third law is met locally, the equation is modified to give:

2 2
JI I

J IJ
J I J

D
m W

Dt


 

 
    

 
v (3.11)

The full meaning of these heuristic changes to the discretised conservation equations has not previously 

been explained.  The derivation presented in the next section offers an explanation of the form of equations 

(3.6) and (3.11).  

4 SPH Discretisation in a Moving Referential Frame 

In order to express the conservation equations in a referential domain, the approach similar to the 

general theory developed by Hughes et al [11] for the Lagrangian, Eulerian and mixed descriptions of 

continuum motion was used.  

The following assumptions provide the basis for the SPH semi-discretisation of the conservation 

equations that follows:  

 Kernel interpolation (integration) is performed in a set of moving referential coordinate systems, each

attached to a particle I (1  I  number of particles).

 The translational velocity of each referential coordinate system is identical to the velocity of the I

particle to which it is attached.  

 The smoothing length h of the interpolation function (centred at particle I) stays constant throughout 

the calculation.  

It is important to note that, the continuum occupying a kernel support moves relative to the referential 

coordinate system everywhere, apart from the location coinciding with the particle I.  Consequently, when the 
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10

kernel interpolation integral is discretised, the mass assigned to particle I cannot leave kernel support for the 

particle.  

Another possible interpretation of the kernel support is that it represents a variable-mass system (an 

open system or a system of changing composition).  To be precise kernel support is a control volume enclosed 

by a control surface.  Although the shape of the control volume is assumed to be fixed, the matter within the 

control volume may change with time.  

Neighbouring J particles (1  J  number of neighbours) move relative to the referential coordinate 

system with a velocity
R J I v v v , where 

Jv is the velocity of particle J and 
Iv is the velocity of particle I.  

Note, the mass assigned to J particles can leave the kernel support of I particle.  

To start, a moving referential (Cartesian) frame is attached to the particle I.  In doing so the distance 

'x x that the kernel function W depends on, becomes a function of two variables, x and 'x .  

The smoothing length h of the interpolation function (centred at particle I) defines the kernel support or 

control volume (CV) over which the smoothing is performed.  In general, the continuum occupying the CV

moves relative to the CV everywhere apart from the location defined by x with relative velocity,

( ' )R
R

d d

dt dt


 

x x x
v .  In the case of the discrete form, neighbouring particles move relative to the referential 

frame and the control volume with a velocity, R
R J I

d

dt
  

x
v v v , where 

Jv is the velocity of a material point 

within the CV and 
Iv is the velocity of the referential coordinate system attached to particle I.  In other words, 

the velocity of the referential frame and the CV is identical to the velocity of particle I. This is represented 

schematically in Figure 4. 

4.1 Properties of the referential derivative

There are two properties of the referential derivative that need to be shown before deriving the revised 

conservation of mass and momentum equations. However, first it is useful to recollect the expressions for 

the material derivatives in the spatial and the referential systems, given by equations (4.1) and (4.2)

respectively.  
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Df f
f

Dt t


  


v (4.1)

CV

Df f
f

Dt t


  


v


(4.2)

Where v is the velocity of a material point within the control volume and CVv is the velocity of the 

control volume (identical to the velocity of the material point at the origin of the moving coordinate system).

The relation between these material derivatives, for any point x' within the CV, follows from the above 

equations:  


R

referential

Df Df
f

Dt Dt
  v

 (4.3)

In the above equation 
( ' )R

R CV

d d

dt dt


   

x x x
v v v is the relative velocity or the velocity of the 

material point with respect to the referential coordinate system.  

First property

The first property of the referential derivative as described above is:  

D D
fdv fdv

Dt Dt 

 
 

(4.4)

Proof: Starting from the definition of material derivative 

D Df
fdv f dv

Dt Dt 

     
   v (4.5)

Next, writing (4.3) in integral form one obtains 

R

D D
fdv fdv fdv

Dt Dt  

     v


(4.6)

The second term on the right hand side in equation (4.6) can be expanded as,

 R R Rfdv f dv f dv
  

       v v v
(4.7)
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 R CVf da f dv
 

      v n v v

Rf da f dv
 

    v n v

Because, the referential frame is moving with velocity CVv the simplification in the last row of equation 

(4.7) can be performed as a consequence of the fact that divergence of a constant velocity field is zero, i.e.

0CV v .  Substituting the last row of equation (4.7) into equation (4.6) yields: 

R

D Df
fdv f dv f da

Dt Dt  

       
   v v n



To complete the proof, the expression for material derivative given in equation (4.5) is then substituted 

into the above equation:

R

D
fdv f da

Dt

D
fdv

Dt

 



  



 



v n



(4.8)

Second property

If one assumes that in the referential coordinate system the domain of integration (control volume)  , 

is attached to a material point ix , and that it coincides with the material domain  (   ) at that point in 

time, then the following holds:

 = 
D D

fdv fdv
Dt Dt 
 




(4.9)

Proof: In order to prove assertion (4.9) one can start from material derivative:

D Df
fdv f dv

Dt Dt 

    
   v (4.10)

Next, using equation (4.6) the above equation can be rewritten as: 

R

W W

D D
fdv = fdv fdv

Dt Dt 

    v


(4.11)

Having in mind that:
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R R R

R CV R

fdv f dv f dv

f da f dv f da f dv

  

   

      

          

  

   

v v v

v n v v v n v
(4.12)

Using the fact that 0CV v , one can proceed to write  

R

D D
fdv f f dv f da

Dt Dt  

       
   v v n



R

D D
fdv f da fdv

Dt Dt  

    v n


(4.13)

This completes the proof.  

4.2 Conservation of Mass  

To discretise the continuity equation in space two approaches were considered.  In the first approach the 

equation is discretised starting from the local form of the continuity in the spatial coordinate system.  In the 

second the integral form of the continuity equation for the moving CV is considered.  

Using equation (4.3), the continuity equation (3.1) can be rewritten for the referential coordinate system 

as:  

0R

D

Dt

      v v


(4.14)

Depending on the process followed, different discrete forms of the continuity equation can be derived.  

To demonstrate this two different discrete forms of equation 4.14 are derived below.  

Form 1

Writing
R CV v v v (where CVv is the velocity of the referential system and the control volume 

attached to it) and substitute into (4.13) gives:

( )

( )

CV

CV

CV

D

Dt

D

Dt

D

Dt

  

   

  

    

      

   

v v v

v v v

v v







(4.15)
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Multiplication of the above equation by the kernel function and integration over the domain yields:  

( ' , ) ( ) ( ' , )

( ' , ) 0CV

D
W h d W h d

Dt

W h d

 




     

    

 



x x v x x

v x x



(4.16)

After integration by parts and neglecting the boundary terms one finds:  

( ' , ) ( ' , ) 0IW h d W h d  
 

        v x x v x x (4.17)

Where ( ' , )
D

W h d
Dt


    x x


 .  When discretised the above equation can be written as:  

    0J J
J J IJ I J IJ

J JJ J

m m
W W  

 
     v v

(4.18)

 ( )J J I IJ
J

m W     v v

Alternatively starting from the global conservation of mass in the moving reference frame (3.1) one can 

write  

( )

( ) 0

R R

R

D
dv dv

Dt

D
dv dv

Dt

  

 

      

    

  

 

v n v

v

  

 



(4.19)

( )R

D

Dt
   v



One can then proceed as normal, multiplication by a kernel, integration by parts and discretisation 

which yields:  

 ( )J J I IJ
J

m W     v v (4.20)

Form 2

Multiplying equation (4.10) by the kernel function and integrating over the domain yields
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( ' , ) ( ' , ) ( ' , ) 0R

D
W h d W h d W h d

Dt

  
  

          x x v x x v x x


(4.21)

After integration by parts and neglecting the boundary terms one finds  

( ' , ) ( ' , )

( ' , ) ( ' , )R R

W h d W h d

W h d W h d

  

 
 

 

      

      

 

 

v x x v x x

v x x v x x



(4.22)

Grouping of terms in (4.22) gives  

 2 ( ' , ) ( ' , )

( ' , )

CV

R

W h d W h d

W h d

  


 



        

   

 



v v x x v x x

v x x



(4.23)

The second and third integrals in the above expression can be linearised using Taylor expansion:  

 2 ( ' , ) ( ' , )

( ' , )

CV

R

W h d W h d

W h d

  


 



       

   

 



v v x x v x x

v x x



(4.24)

Then partial integration of the linearised terms yield the final continuous form of the continuity 

equation:

 

 

2 ( ' , ) ( ' , )

( ' , )

CV

CV

W h d W h d

W h d

  


 



       

    

 



v v x x v x x

v v x x



(4.25)

When discretised the above equation can be written as:  

 

 

2 J J
J I J IJ I J IJ

J JJ J

J
I J I IJ

J J

m m
W W

m
W

  
 




    

  

 



v v v

v v



(4.26)

This then simplifies to  

 2 J I
J J I IJ

J J

m W
 





   v v (4.27)
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4.3 Conservation of Momentum 

In the consideration of the momentum equation presented below, a similar approach as with the 

conservation of mass equation was taken.  Using equation (4.3) one can rewrite the momentum equation (3.7) 

as

1
R

D

Dt



   

v
v v


(4.28)

Multiplication of the above equation by the kernel function and integration over the domain yields:  

1
( ' , ) ( ' , ) ( ' , )R

D
W h d W h d W h d

Dt


  

          
v

x x vv x x x x


(4.29)

Using the divergence theorem, and after dropping the boundary terms, this transforms into the form 

convenient for discretisation (note, the velocity in the second term is linearised):  

( ' , ) ( ( ' , ))

1
( ' , )

R RW h d W h d

W h d


 



       

   

 



v v v x x v v x x

x x



(4.30)

When discretised the above equation can be written as:  

   

 1

J J
I I R IJ J R IJ

J JJ J

J
I J IJ

JI J

m m
W W

m
W

 

 
 

   

   

 



v v v v v

(4.31)

This then simplifies to:  

  

 1

J
I J I R IJ

J J

J
I J IJ

JI J

m
W

m
W



 
 

   

  





v v v v
(4.32)

The discrete form of the conservation of momentum equation (4.32) differs from the equation (3.11) by 

the first term on the right hand side.  Note, that the magnitude of this term remains small while the relative 

velocity between the I particle and its neighbouring J particles is low.  
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5 Numerical Examples

To investigate the new forms of the SPH equations, the continuity equation (4.27) and the momentum 

equation (4.32) were implemented into our in-house SPH code. Two numerical examples, a 1D shock tube 

example and a 2D elastic-plastic impact problem are given below to illustrate the performance of these new 

forms.  The Sod shock tube problem is a widely used test case in compressible gas dynamics [13] and a

symmetric elastic-plastic block impact has been previously published [14-16].

The conventional SPH form of semi-discretised equations and the newly developed form were 

discretised in time using the same central difference scheme.  The same central-difference scheme is widely 

used in explicit finite element codes [17].  The time step size is variable and controlled by the stability 

requirements of the explicit scheme. The Courant number of the shock tube was kept at 0.6 for the shock tube 

problem and 0.8 for the symmetric block impact.  A smaller step size was used for the Sod problem due to the 

presence of a strong shock.  A standard von Neumann-Richtmyer pressure form of the artificial viscosity was 

used with linear coefficient 0.06 and quadratic coefficient 1.5.

5.1 1D Shock tube test

To compare the new framework to conventional SPH in 1D the Sod shock tube problem was 

considered.  The problem definition and initial conditions are shown in Figure 5.  The model comprises 100 

particles in total, 50 on each side of the initial interface discontinuity.  The gas is modelled using the perfect gas 

equation of state with  = 1.4. This problem generates a shock that travels to the right, and an expansion fan to 

the left.  As can be seen in Figures 6 and 7 the results from the two formulations are very similar.

No special treatment of the contact discontinuity has been used, to keep the comparison of the behaviour 

of the two forms of discrete equations simple.  This results in oscillation at the contact discontinuity that forms 

during the very first time steps of the solution.  As this is a collocational scheme these zero-energy mode 

oscillations persist in the solution [15].

5.2 2D Block impact problem

To compare the behaviour of the two frameworks in higher dimensions, a normal symmetrical impact of 

two metallic blocks was simulated in 2D.  Each block was 1.0cm x 0.4 cm, see Figure 9, and modelled using 50 

x 20 particles. A bi-linear elastic-plastic material model [17] was used for each block, with material properties 
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given in table 1.  The two sets of results, shown in Figure 9 to Figure 11, are very similar.  The level of the 

actual differences are larger than seen in the 1D shock tube problem, but remain small with the maximum 

difference in total kinetic energy below 1.5%.

The two tests show that the new form of the conservation equations gives simulation results that 

compare well with the conventional SPH method for problems where the relative velocity between neighbour 

particles is small.  Further work is required to test and demonstrate the new framework on problems where the 

relative velocity is large.

6 Conclusions  

A framework for the SPH semi-discretisation of the conservation equations, where kernel interpolation 

is performed in the moving reference frame attached to particle I, was developed.  

The new framework allows for a rigorous SPH semi-discretisation of the conservation equations without 

the need for any heuristic changes to the equations.  The analysis presented offers a possible explanation for the 

form of the semi-discrete SPH equations in common use, in that they represent the conservation laws written in 

a moving reference frame.  The continuous form of the conservation equations can be discretised in a number 

of ways.  The new form of the conservation equations considered here compares well with the conventional 

SPH forms of the equations for the numerical examples considered, with differences in the results for the 2D 

being generally less than 1%.  

The presented approach provides a framework for the future derivation of semi discretised forms of 

conservation equations with variable h. 
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Figure Captions

Figure 1:  Kernel support and neighbouring particles in the discrete kernel interpolation.

Figure 2:  A 2D domain of a kernel function in the conventional SPH method  

Figure 3:  Deformation of the material referential volume 0 and vector 02h into a spatial volume 

and vector 2h .  (X1, X2, X3) are the material coordinates, (x1,x2,x3) are the spatial coordinates and 

( ' ' '
1 2 3, ,x x x ) are the referential coordinates.  

Figure 4:  A 2D representation of domain of a kernel function in a moving coordinate system

Figure 5: Initial conditions of shock tube problem

Figure 6: Density profile for shock tube at time 0.2.

Figure 7: Pressure profile for shock tube at time 0.2.

Figure 8:  Initial conditions for 2D block test problem

Figure 9: Comparison of y-velocity (cm/s) at time 1.0 s (a) Conventional SPH (b) New Framework..

Figure 10: Comparison of von Mises effective stress (Mbar) at time 1.0 s. (a) Conventional SPH (b) 

New Framework..

Figure 11: Comparison of y-velocity (cm/s) at time 2.5 s. (a) Conventional SPH (b) New 

Framework..

Table Captions

Table 1:   Material properties
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Figure 1:  Kernel support and neighbouring particles in the discrete kernel interpolation.
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Figure 2:  A 2D domain of a kernel function in the conventional SPH method  
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Figure 3:  Deformation of the material referential volume 0  and vector 02h  into a spatial volume 

and vector 2h .  (X1, X2, X3) are the material coordinates, (x1,x2,x3) are the spatial coordinates and ( ' ' '
1 2 3, ,x x x ) are 

the referential coordinates.  
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Figure 4:  A 2D representation of domain of a kernel function in a moving coordinate system
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Figure 5: Initial conditions of shock tube problem

Left
0 < x < 0.5
L =  1.0
PL =  1.0
vL =  0.0

Right
0.5 < x < 1.0
R =  0.125

PR =  0.1
vR =  0.0

Figure 5



 

 

 

ACCEPTED MANUSCRIPT 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1
Position

D
en

si
ty

Exact Solution
Conventional SPH
New Framework

Figure 6: Density profile for shock tube at time 0.2.
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Figure 7: Pressure profile for shock tube at time 0.2.

Figure 7
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Figure 8: Velocity profile for shock tube at time 0.2.
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Figure 9:  Initial conditions for 2D block test problem
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Figure 10 a

http://ees.elsevier.com/cmame/download.aspx?id=89816&guid=025fb9c1-f150-4d3a-bde4-1ab939f75e0a&scheme=1
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Figure 10 b

http://ees.elsevier.com/cmame/download.aspx?id=89817&guid=f4762c33-9771-43a6-b704-9d3fe43d186d&scheme=1
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Figure 11a
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Figure 11b
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Table 1:   Material properties

Density 7.8 g/cm3

Elastic modulus 2.1 Mbar
Poisson’s Ratio 0.3

Yield Stress 0.01 Mbar
Plastic tangent modulus 0.21 MBar

Table




