7 research outputs found

    Tackling amyloidogenesis in Alzheimer's disease with A2V variants of Amyloid-β

    Get PDF
    We developed a novel therapeutic strategy for Alzheimer’s disease (AD) exploiting the properties of a natural variant of Amyloid-β (Aβ) carrying the A2V substitution, which protects heterozygous carriers from AD by its ability to interact with wild-type Aβ, hindering conformational changes and assembly thereof. As prototypic compound we designed a six-mer mutated peptide (Aβ1-6A2V), linked to the HIV-related TAT protein, which is widely used for brain delivery and cell membrane penetration of drugs. The resulting molecule [Aβ1-6A2VTAT(D)] revealed strong anti-amyloidogenic effects in vitro and protected human neuroblastoma cells from Aβ toxicity. Preclinical studies in AD mouse models showed that short-term treatment with Aβ1-6A2VTAT(D) inhibits Aβ aggregation and cerebral amyloid deposition, but a long treatment schedule unexpectedly increases amyloid burden, although preventing cognitive deterioration. Our data support the view that the AβA2V-based strategy can be successfully used for the development of treatments for AD, as suggested by the natural protection against the disease in human A2V heterozygous carriers. The undesirable outcome of the prolonged treatment with Aβ1-6A2VTAT(D) was likely due to the TAT intrinsic attitude to increase Aβ production, avidly bind amyloid and boost its seeding activity, warning against the use of the TAT carrier in the design of AD therapeutics

    MM2-thalamic Creutzfeldt-Jakob disease-Neuropathological, biochemical and transmission studies identify a distinctive prion strain

    Get PDF
    In Creutzfeldt-Jakob disease (CJD), molecular typing based on the size of the protease resistant core of the disease-associated prion protein (PrP(Sc) ) and the M/V polymorphism at codon 129 of the PRNP gene correlates with the clinico-pathologic subtypes. Approximately 95% of the sporadic 129MM CJD patients are characterized by cerebral deposition of type 1 PrP(Sc) and correspond to the classic clinical CJD phenotype. The rare 129MM CJD patients with type 2 PrP(Sc) are further subdivided in a cortical and a thalamic form also indicated as sporadic fatal insomnia. We observed two young patients with MM2-thalamic CJD. Main neuropathological features were diffuse, synaptic PrP immunoreactivity in the cerebral cortex and severe neuronal loss and gliosis in the thalamus and olivary nucleus. Western blot analysis showed the presence of type 2A PrP(Sc) . Challenge of transgenic mice expressing 129MM human PrP showed that MM2-thalamic sporadic CJD (sCJD) was able to transmit the disease, at variance with MM2-cortical sCJD. The affected mice showed deposition of type 2A PrP(Sc) , a scenario that is unprecedented in this mouse line. These data indicate that MM2-thalamic sCJD is caused by a prion strain distinct from the other sCJD subtypes including the MM2-cortical form

    Synthetic prions with novel strain-specified properties

    Get PDF
    Prions are infectious proteins that possess multiple self-propagating structures. The information for strains and structural specific barriers appears to be contained exclusively in the folding of the pathological isoform, PrP(Sc). Many recent studies determined that de novo prion strains could be generated in vitro from the structural conversion of recombinant (rec) prion protein (PrP) into amyloidal structures. Our aim was to elucidate the conformational diversity of pathological recPrP amyloids and their biological activities, as well as to gain novel insights in characterizing molecular events involved in mammalian prion conversion and propagation. To this end we generated infectious materials that possess different conformational structures. Our methodology for the prion conversion of recPrP required only purified rec full-length mouse (Mo) PrP and common chemicals. Neither infected brain extracts nor amplified PrP(Sc) were used. Following two different in vitro protocols recMoPrP converted to amyloid fibrils without any seeding factor. Mouse hypothalamic GT1 and neuroblastoma N2a cell lines were infected with these amyloid preparations as fast screening methodology to characterize the infectious materials. Remarkably, a large number of amyloid preparations were able to induce the conformational change of endogenous PrPC to harbor several distinctive proteinase-resistant PrP forms. One such preparation was characterized in vivo habouring a synthetic prion with novel strain specified neuropathological and biochemical properties

    Brain delivery of AAV9 expressing an anti-PrP monovalent antibody delays prion disease in mice

    No full text
    Prion diseases are caused by a conformational modification of the cellular prion protein (PrP (C) ) into disease-specific forms, termed PrP (Sc) , that have the ability to interact with PrP (C) promoting its conversion to PrP (Sc) . In vitro studies demonstrated that anti-PrP antibodies inhibit this process. In particular, the single chain variable fragment D18 antibody (scFvD18) showed high efficiency in curing chronically prion-infected cells. This molecule binds the PrP (C) region involved in the interaction with PrP (Sc) thus halting further prion formation. These findings prompted us to test the efficiency of scFvD18 in vivo. A recombinant Adeno-Associated Viral vector serotype 9 was used to deliver scFvD18 to the brain of mice that were subsequently infected by intraperitoneal route with the mouse-adapted scrapie strain RML. We found that the treatment was safe, prolonged the incubation time of scrapie-infected animals and decreased the burden of total proteinase-resistant PrP (Sc) in the brain, suggesting that scFvD18 interferes with prion replication in vivo. This approach is relevant for designing new therapeutic strategies for prion diseases and other disorders characterized by protein misfolding

    Prion Efficiently Replicates in \u3b1-Synuclein Knockout Mice

    No full text
    Prion diseases are a group of neurodegenerative disorders associated with the conformational conversion of the cellular prion protein (PrPC) into an abnormal misfolded form named PrPSc. Other than accumulating in the brain, PrPSc can bind PrPC and force it to change conformation to PrPSc. The exact mechanism which underlies the process of PrPC/PrPSc conversion still needs to be defined and many molecules or cofactors might be involved. Several studies have documented an important role of PrPC to act as receptor for abnormally folded forms of \u3b1-synuclein which are responsible of a group of diseases known as synucleinopathies. The presence of PrPC was required to promote efficient internalization and spreading of abnormal \u3b1-synuclein between cells. In this work, we have assessed whether \u3b1-synuclein exerts any role in PrPSc conversion and propagation either in vitro or in vivo. Indeed, understanding the mechanism of PrPC/PrPSc conversion and the identification of cofactors involved in this process is crucial for developing new therapeutic strategies. Our results showed that PrPSc was able to efficiently propagate in the brain of animals even in the absence of \u3b1-synuclein thus suggesting that this protein did not act as key modulator of prion propagation. Thus, \u3b1-synuclein might take part in this process but is not specifically required for sustaining prion conversion and propagation
    corecore