108 research outputs found

    Critical insights into the pathogenesis of clinical isolates of pandemic influenza A(H1N1) 2009 virus in mouse and ferret models.

    Get PDF
    Influenza A virus (IAV) is a minus-sense, segmented, single-stranded RNA virus that infects the respiratory tract of humans and can cause severe illness. Novel IAV variants perpetually emerge on every continent, and the emergence of variants with increased transmissibility and/or pathogenesis in the human population is a serious concern for global public health. Infection with IAV typically causes an acute, self-limiting upper respiratory tract disease. However, severe IAV disease is characterized by infection of the lower respiratory tract which can lead to pneumonia and may result in the development of acute respiratory distress syndrome (ARDS). Viral and host contributions to the development of ARDS are poorly understood, however IAV pathogenesis has been linked mutations in the receptor binding protein and the viral polymerase. Ferrets and mice are two important laboratory animal models for studying IAV pathogenesis. In 2009, a novel H1N1 subtype IAV (H1N1pdm) emerged in the human population and displayed variable pathology in humans. Using a mouse model, we show the variability of clinical isolates of H1N1pdm is driven by viral mutations, and that the timing of the inflammatory response is correlated with disease severity. To investigate spatiotemporal aspects of potential host and viral contributions to influenza pathogenesis, we developed a live imaging platform for ferrets infected with a human clinical isolate of H1N1pdm. We detected an early recruitment of neutrophils into ferret lungs following infection, which accumulated at foci of H1N1pdm infection within specific anatomical regions of the lung by 24 hours post-infection. The neutrophil response was biphasic, characterized by the recruitment of two populations with differing gene expression profiles, and baseline neutrophil levels were increased throughout the entire lung, including areas with no apparent viral infection. Changes in the viral microenvironment resulted in the regeneration of lung epithelium during recovery phase of infection, and this was imaged with PET-CT using a radiolabeled glucose analog. In summary, these data illustrate critical features of the immune response to IAV, and emphasize important considerations about the timing and accuracy of innate immune responses in studying viral pathogenesis

    Uranotaenia unguiculata Edwards, 1913 are attracted to sound, feed on amphibians, and are infected with multiple viruses

    Get PDF
    Abstract Background Uranotaenia unguiculata Edwards, 1913 is a species of mosquito (Diptera: Culicidae) native to central Europe. Recently a novel lineage of the West Nile virus (WNV-lineage 4c) was identified in pools of adult female Ur. unguiculata. To increase the body of knowledge about this species, various trapping methods were evaluated to determine the most efficient method for capturing adult female Ur. unguiculata. Results Sound traps collected equivalent numbers of female Ur. unguiculata as low-hanging light-baited downdraft traps. Hosts were identified as Pelophylax lessonae and P. ridibunda (Anura: Ranidae) species group frogs from the blood found in engorged females. In addition to confirming infection by WNV-lin. 4c, a potentially integrated flavivirus sequence was detected in male mosquitoes. A novel Alphamesonivirus 1 (Nidovirales: Mesoniviridae) was found to be widespread in the Ur. unguiculata population and is herein described. Conclusions Efficient collection methods for Ur. unguiculata for arbovirus surveillance reflect mosquito questing behavior. Uranotaenia unguiculata targets frog species which call from the water, and it is likely that the novel WNV-lin. 4c is maintained in a frog-mosquito transmission cycle. The improved trapping methods listed here will assist future studies of the vector status of Ur. unguiculata for WNV and other arboviruses

    Course of seasonal influenza A/Brisbane/59/07 H1N1 infection in the ferret

    Get PDF
    Every year, influenza viruses infect approximately 5-20% of the population in the United States leading to over 200,000 hospitalizations and 36,000 deaths from flu-related complications. In this study, we characterized the immune and pathological progression of a seasonal strain of H1N1 influenza virus, A/Brisbane/59/2007 in a ferret model. The immune response of the animals showed a dose-dependent increase with increased virus challenge, as indicated by the presence of virus specific IgG, IgM, and neutralizing antibodies. Animals infected with higher doses of virus also experienced increasing severity of clinical symptoms and fever at 2 days post-infection (DPI). Interestingly, weight loss was more pronounced in animals infected with lower doses of virus compared to those infected with a higher dose; these results were consistent with viral titers of swabs collected from the nares, but not the throat. Analyzed specimens included nasal and throat swabs from 1, 3, 5, and 7 DPI as well as tissue samples from caudal lung and nasal turbinates. Viral titers of the swab samples in all groups were higher on 1 and 3 DPI and returned to baseline levels by 7 DPI. Analysis of nasal turbinates indicated presence of virus at 3 DPI in all infected groups, whereas virus was only detected in the lungs of animals in the two highest dose groups. Histological analysis of the lungs showed a range of pathology, such as chronic inflammation and bronchial epithelial hypertrophy. The results provided here offer important endpoints for preclinical testing of the efficacy of new antiviral compounds and experimental vaccines

    Transcriptome sequencing and development of an expression microarray platform for the domestic ferret

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ferret (<it>Mustela putorius furo</it>) represents an attractive animal model for the study of respiratory diseases, including influenza. Despite its importance for biomedical research, the number of reagents for molecular and immunological analysis is restricted. We present here a parallel sequencing effort to produce an extensive EST (expressed sequence tags) dataset derived from a normalized ferret cDNA library made from mRNA from ferret blood, liver, lung, spleen and brain.</p> <p>Results</p> <p>We produced more than 500000 sequence reads that were assembled into 16000 partial ferret genes. These genes were combined with the available ferret sequences in the GenBank to develop a ferret specific microarray platform. Using this array, we detected tissue specific expression patterns which were confirmed by quantitative real time PCR assays. We also present a set of 41 ferret genes with even transcription profiles across the tested tissues, indicating their usefulness as housekeeping genes.</p> <p>Conclusion</p> <p>The tools developed in this study allow for functional genomic analysis and make further development of reagents for the ferret model possible.</p

    Crimean-Congo hemorrhagic fever virus endemicity in United Arab Emirates, 2019

    Get PDF
    © 2020 Centers for Disease Control and Prevention (CDC). All rights reserved. We conducted a cross-sectional survey of Crimean-Congo hemorrhagic fever virus (CCHFV) in dromedary camels and attached ticks at 3 locations in the United Arab Emirates. Results revealed a high prevalence of CCHFV-reactive antibodies in camels and viral RNA in ticks and camel serum, suggesting the virus is endemic in this country

    Innate and adaptive immune genes associated with MERS-CoV infection in dromedaries

    Get PDF
    The recent SARS-CoV-2 pandemic has refocused attention to the betacoronaviruses, only eight years after the emergence of another zoonotic betacoronavirus, the Middle East respiratory syndrome coronavirus (MERS-CoV). While the wild source of SARS-CoV-2 may be disputed, for MERS-CoV, dromedaries are considered as source of zoonotic human infections. Testing 100 immune-response genes in 121 dromedaries from United Arab Emirates (UAE) for potential association with present MERS-CoV infection, we identified candidate genes with important functions in the adaptive, MHC-class I (HLA-A-24-like) and II (HLA-DPB1-like), and innate immune response (PTPN4, MAGOHB), and in cilia coating the respiratory tract (DNAH7). Some of these genes previously have been associated with viral replication in SARS-CoV-1/-2 in humans, others have an important role in the movement of bronchial cilia. These results suggest similar host genetic pathways associated with these betacoronaviruses, although further work is required to better understand the MERS-CoV disease dynamics in both dromedaries and humans

    Different Neutralization Profiles After Primary SARS-CoV-2 Omicron BA.1 and BA.2 Infections

    Get PDF
    Background and MethodsThe SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) Omicron (B.1.1.529) variant is the antigenically most distinct variant to date. As the heavily mutated spike protein enables neutralization escape, we studied serum-neutralizing activities of naïve and vaccinated individuals after Omicron BA.1 or BA.2 sub-lineage infections in live virus neutralization tests with Omicron BA.1, Omicron BA.2, wildtype (WT, B1.1), and Delta (B.1.617.2) strains. Serum samples obtained after WT infections and three-dose mRNA vaccinations with and without prior infection were included as controls.ResultsPrimary BA.1 infections yielded reduced neutralizing antibody levels against WT, Delta, and Omicron BA.2, while samples from BA.2-infected individuals showed almost no cross-neutralization against the other variants. Serum neutralization of Omicron BA.1 and BA.2 variants was detectable after three-dose mRNA vaccinations, but with reduced titers. Vaccination-breakthrough infections with either Omicron BA.1 or BA.2, however, generated equal cross-neutralizing antibody levels against all SARS-CoV-2 variants tested.ConclusionsOur study demonstrates that although Omicron variants are able to enhance cross-neutralizing antibody levels in pre-immune individuals, primary infections with BA.1 or BA.2 induced mostly variant-specific neutralizing antibodies, emphasizing the differently shaped humoral immunity induced by the two Omicron variants. These data thus contribute substantially to the understanding of antibody responses induced by primary Omicron infections or multiple exposures to different SARS-CoV-2 variants and are of particular importance for developing vaccination strategies in the light of future emerging variants

    De-Novo Transcriptome Sequencing of a Normalized cDNA Pool from Influenza Infected Ferrets

    Get PDF
    The ferret is commonly used as a model for studies of infectious diseases. The genomic sequence of this animal model is not yet characterized, and only a limited number of fully annotated cDNAs are currently available in GenBank. The majority of genes involved in innate or adaptive immune response are still lacking, restricting molecular genetic analysis of host response in the ferret model. To enable de novo identification of transcriptionally active ferret genes in response to infection, we performed de-novo transcriptome sequencing of animals infected with H1N1 A/California/07/2009. We also included splenocytes induced with bacterial lipopolysaccharide to allow for identification of transcripts specifically induced by Gram-negative bacteria. We pooled and normalized the cDNA library in order to delimit the risk of sequencing only highly expressed genes. While normalization of the cDNA library removes the possibility of assessing expression changes between individual animals, it has been shown to increase identification of low abundant transcripts. In this study, we identified more than 19000 partial ferret transcripts, including more than 1000 gene orthologs known to be involved in the innate and the adaptive immune response

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF
    corecore