1,500 research outputs found

    Using a two-scintillator paddle telescope for cosmic ray flux measurements

    Get PDF
    A two-scintillator paddle muon telescope with variable angular acceptance at the earth\u27s surface was used to study correlations between flux distribution and barometric pressure. The detector was placed in 2 different locations around Georgia State University with varying paddle separations of 0, 7, and 14 inches. Correlation and anti-correlation analyses were conducted by using the muon count from the detector along with the barometric pressure, surface temperature, stratospheric temperature and solar activity. It was observed that there was a short and long-term variation relationship between cosmic ray counts and barometric pressure and also cosmic ray counts and temperature. No significant relationship was found between cosmic ray flux and solar activity. A new two-scintillator paddle telescope with larger detecting area was constructed in order to observe a stronger correlation between cosmic ray flux and pressure

    Energy Dispersive K X-Ray Fluorescence Analysis for On-Line Process Control of Heavy Metal Concentrations

    Get PDF
    X-ray analysis has traditionally been wavelength dispersive, manpower intensive, and an analytical laboratory tool employing massive and costly x-ray generators and diffraction spectrometers. Following the development of the lithium drifted silicon and germanium [Si(Li) and Ge(Li)] semiconductor radiation detectors in the mid 1960’s, and more recently the high purity germanium detector [HPGe], the analytical technique of energy dispersive x-ray fluorescence analysis (XRFA)1matured during the 1970’s

    STS-31 Space Shuttle mission report

    Get PDF
    The STS-31 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fifth flight of the Space Shuttle and the tenth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-34/LWT-27), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Booster (SRB) (designated as BI-037). The primary objective of the mission was to place the Hubble Space Telescope (HST) into a 330 nmi. circular orbit having an inclination of 28.45 degrees. The secondary objectives were to perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG), Investigations into Polymer Membrane Processing (IPMP), Radiation Monitoring Equipment (RME), Ascent Particle Monitor (APM), IMAX Cargo Bay Camera (ICBC), Air Force Maui Optical Site Calibration Test (AMOS), IMAX Crew Compartment Camera, and Ion Arc payloads. In addition, 12 development test objectives (DTO's) and 10 detailed supplementary objectives (DSO's) were assigned to the flight. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystems during the mission are summarized, and the official problem tracking list is presented. In addition, each of the Space Shuttle Orbiter problems is cited in the subsystem discussion

    STS-41 Space Shuttle mission report

    Get PDF
    The STS-41 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-sixth flight of the Space Shuttle and the eleventh flight of the Orbiter vehicle, Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-39/LWT-32), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Boosters (SRB's), designated as BI-040. The primary objective of the STS-41 mission was to successfully deploy the Ulysses/inertial upper stage (IUS)/payload assist module (PAM-S) spacecraft. The secondary objectives were to perform all operations necessary to support the requirements of the Shuttle Backscatter Ultraviolet (SSBUV) Spectrometer, Solid Surface Combustion Experiment (SSCE), Space Life Sciences Training Program Chromosome and Plant Cell Division in Space (CHROMEX), Voice Command System (VCS), Physiological Systems Experiment (PSE), Radiation Monitoring Experiment - 3 (RME-3), Investigations into Polymer Membrane Processing (IPMP), Air Force Maui Optical Calibration Test (AMOS), and Intelsat Solar Array Coupon (ISAC) payloads. The sequence of events for this mission is shown in tabular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter problem is cited in the subsystem discussion

    STS-35 Space Shuttle mission report

    Get PDF
    The STS-35 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-eighth flight of the Space Shuttle and the tenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-35/LWT-28), three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-038. The primary objectives of this flight were to successfully perform the planned operations of the Ultraviolet Astronomy (Astro-1) payload and the Broad-Band X-Ray Telescope (BBXRT) payload in a 190-nmi. circular orbit which had an inclination of 28.45 degrees. The sequence of events for this mission is shown in tablular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter subsystem problem is cited in the applicable subsystem discussion

    STS-38 Space Shuttle mission report

    Get PDF
    The STS-38 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-seventh flight of the Space Shuttle and the seventh flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-40/LWT-33), three Space Shuttle main engines (SSME's) (serial numbers 2019, 2022, 2027), and two Solid Rocket Boosters (SRB's), designated as BI-039. The STS-38 mission was a classified Department of Defense mission, and as much, the classified portions of the mission are not presented in this report. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystem during the mission are summarized and the official problem tracking list is presented. In addition, each Space Shuttle Orbiter problem is cited in the subsystem discussion

    Electromagnetic Chirps from Neutron Star-Black Hole Mergers

    Get PDF
    We calculate the electromagnetic signal of a gamma-ray flare coming from the surface of a neutron star shortly before merger with a black hole companion. Using a new version of the Monte Carlo radiation transport code Pandurata that incorporates dynamic spacetimes, we integrate photon geodesics from the neutron star surface until they reach a distant observer or are captured by the black hole. The gamma-ray light curve is modulated by a number of relativistic effects, including Doppler beaming and gravitational lensing. Because the photons originate from the inspiraling neutron star, the light curve closely resembles the corresponding gravitational waveform: a chirp signal characterized by a steadily increasing frequency and amplitude. We propose to search for these electromagnetic chirps using matched filtering algorithms similar to those used in LIGO data analysis.Comment: 13 pages, 5 figures, submitted to Ap

    DPP-PMRF: Rethinking Optimization for a Probabilistic Graphical Model Using Data-Parallel Primitives

    Full text link
    We present a new parallel algorithm for probabilistic graphical model optimization. The algorithm relies on data-parallel primitives (DPPs), which provide portable performance over hardware architecture. We evaluate results on CPUs and GPUs for an image segmentation problem. Compared to a serial baseline, we observe runtime speedups of up to 13X (CPU) and 44X (GPU). We also compare our performance to a reference, OpenMP-based algorithm, and find speedups of up to 7X (CPU).Comment: LDAV 2018, October 201
    • …
    corecore