7 research outputs found

    An experimental analysis on the magnetic field sensitivity of the black-meadow ant Formica pratensis Retzius (Hymenoptera: Formicidae)

    No full text
    Ant responses were tested under both the natural geomagnetic and artificially induced Earth-strength electromagnetic field. Foragers were trained for a month to visit a food source at the north arm accessed through an orientation platform assembly. Under the natural geomagnetic field, when all other orientational cues were eliminated, results indicated significant heterogeneity of ant distribution with the majority seeking geomagnetic north in darkness. However, in light, foragers failed to discriminate geomagnetic north. Under shifted artificial electromagnetic field, orientation was predominantly on the artificial magnetic N/S axis with a significant preference for the artificial north in both light and dark conditions

    Magnetite biomineralisaton in termites.

    No full text
    Experimental evidence exists for magnetoreception in termites, a major component of the soil macrofauna in many tropical countries. This preliminary study identifies for the first time the presence of biogenic ferrimagnets (magnetite?) in two species of termite (Nasutitermes exitiosus and Amitermes meridionalis), based on magnetic measurements of whole termite specimens and individual body sections, and analysis by electron microscopy of magnetically-extracted grains. The magnetic measurements indicate the presence of very small concentrations of magnetic material, with more magnetic grains in the thorax/abdomen region compared to the head. Magnetic interaction, due to clustering of grains, is also identified by the measurements. Analysis of magnetic extracts by transmission electron microscopy identifies the presence of uniquely ultrafine (10nm) and unidimensional grains of ferrimagnetic material, unequivocally distinct from any possible extraneous magnetite sources, such as ingested soil. Hence, this provides firm evidence for biogenic formation of this magnetic material by these two termite species. Such ultrafine grains would be superparamagnetic, ie. incapable of carrying a permanent magnetic moment, unless they were sited in clusters of interacting grains, when some remanence-carrying ability - and hence magnetotaxis - would be possible

    Are ants sensitive to the geometry of tunnel bifurcation?

    No full text
    International audienceThe ability to orient and navigate in space is essential for all animals whose home range is organized around a central point. Because of their small home range compared to vertebrates, central place foraging insects such as ants have for a long time provided a choice model for the study of orientation mechanisms. In many ant species, the movement of individuals on their colony home range is achieved essentially collectively, on the chemical trails laid down by their nest mates. In the initial stage of food recruitment, these trails can cross each other and thus form a network of interconnected paths in which ants have to orient. Previous simulation studies have shown that ants can find the shortest path between their nest and a food source in such a network only if there is a bias in the branch they choose when they reach an asymmetrical bifurcation. In this paper, we studied the choice of ants when facing either a symmetrical or an asymmetrical bifurcation between two tunnels. Ants were tested either on their way to a food source or when coming back to their nest, and either in the presence or in the absence of a chemical trail. Overall, our results show that the choice of an ant at a tunnel bifurcation depends more on the presence/absence of a trail pheromone than on the geometry of the bifurcation itself
    corecore