1,073 research outputs found

    A Search for Pulsars in Quiescent Soft X-Ray Transients. I

    Get PDF
    We have carried out a deep search at 1.4 GHz for radio pulsed emission from six soft X-ray transient sources observed during their X-ray quiescent phase. The commonly accepted model for the formation of the millisecond radio pulsars predicts the presence of a rapidly rotating, weakly magnetized neutron star in the core of these systems. The sudden drop in accretion rate associated with the end of an X-ray outburst causes the Alfv\`en surface to move outside the light cylinder, allowing the pulsar emission process to operate. No pulsed signal was detected from the sources in our sample. We discuss several mechanisms that could hamper the detection and suggest that free-free absorption from material ejected from the system by the pulsar radiation pressure could explain our null result.Comment: accepted by Ap

    The 69 ms Radio Pulsar Near the Supernova Remnant RCW 103

    Get PDF
    We report the detection of the radio pulsar counterpart to the 69 ms X-ray pulsar discovered near the supernova remnant RCW 103 (G332.4-0.4). Our detection confirms that the pulsations arise from a rotation-powered neutron star, which we name PSR J1617-5055. The observed barycentric period derivative confirms that the pulsar has a characteristic age of only 8 kyr, the sixth smallest of all known pulsars. The unusual apparent youth of the pulsar and its proximity to a young remnant requires that an association be considered. Although the respective ages and distances are consistent within substantial uncertainties, the large inferred pulsar transverse velocity is difficult to explain given the observed pulsar velocity distribution, the absence of evidence for a pulsar wind nebula, and the symmetry of the remnant. Rather, we argue that the objects are likely superposed on the sky; this is reasonable given the complex area. Without an association, the question of where is the supernova remnant left behind following the birth of PSR J1617-5055 remains open. We also discuss a possible association between PSR J1617-5055 and the gamma-ray source 2CG 333+01. Though an association is energetically plausible, it is unlikely given that EGRET did not detect 2CG 333+01.Comment: 18 pages, 2 encapsulated Postscript figures, uses AAS LaTeX style files. Accepted for publication in The Astrophysical Journal Letter

    A Shapiro delay detection in the binary system hosting the millisecond pulsar PSR J1910-5959A

    Full text link
    PSR J1910-5959A is a binary pulsar with a helium white dwarf companion located about 6 arcmin from the center of the globular cluster NGC6752. Based on 12 years of observations at the Parkes radio telescope, the relativistic Shapiro delay has been detected in this system. We obtain a companion mass Mc = 0.180+/-0.018Msun (1sigma) implying that the pulsar mass lies in the range 1.1Msun <= Mp <= 1.5Msun. We compare our results with previous optical determinations of the companion mass, and examine prospects for using this new measurement for calibrating the mass-radius relation for helium white dwarfs and for investigating their evolution in a pulsar binary system. Finally we examine the set of binary systems hosting a millisecond pulsar and a low mass helium white dwarf for which the mass of both stars has been measured. We confirm that the correlation between the companion mass and the orbital period predicted by Tauris & Savonije reproduces the observed values but find that the predicted Mp - Pb correlation over-estimates the neutron star mass by about 0.5Msun in the orbital period range covered by the observations. Moreover, a few systems do not obey the observed Mp - Pb correlation. We discuss these results in the framework of the mechanisms that inhibit the accretion of matter by a neutron star during its evolution in a low-mass X-ray binary.Comment: 4 figures, 2 tables, accepted for publication in the Astrophysical Journa

    Timing of Millisecond Pulsars in NGC 6752: Evidence for a High Mass-to-Light Ratio in the Cluster Core

    Get PDF
    Using pulse timing observations we have obtained precise parameters, including positions with about 20 mas accuracy, of five millisecond pulsars in NGC 6752. Three of them, located relatively close to the cluster center, have line-of-sight accelerations larger than the maximum value predicted by the central mass density derived from optical observation, providing dynamical evidence for a central mass-to-light ratio >~ 10, much higher than for any other globular cluster. It is likely that the other two millisecond pulsars have been ejected out of the core to their present locations at 1.4 and 3.3 half-mass radii, respectively, suggesting unusual non-thermal dynamics in the cluster core.Comment: Accepted by ApJ Letter. 5 pages, 2 figures, 1 tabl

    Formation of "Lightnings" in a Neutron Star Magnetosphere and the Nature of RRATs

    Full text link
    The connection between the radio emission from "lightnings" produced by the absorption of high-energy photons from the cosmic gamma-ray background in a neutron star magnetosphere and radio bursts from rotating radio transients (RRATs) is investigated. The lightning length reaches 1000 km; the lightning radius is 100 m and is comparable to the polar cap radius. If a closed magnetosphere is filled with a dense plasma, then lightnings are efficiently formed only in the region of open magnetic field lines. For the radio emission from a separate lightning to be observed, the polar cap of the neutron star must be directed toward the observer and, at the same time, the lightning must be formed. The maximum burst rate is related to the time of the plasma outflow from the polar cap region. The typical interval between two consecutive bursts is ~100 s. The width of a single radio burst can be determined both by the width of the emission cone formed by the lightning emitting regions at some height above the neutron star surface and by a finite lightning lifetime. The width of the phase distribution for radio bursts from RRATs, along with the integrated pulse width, is determined by the width of the bundle of open magnetic field lines at the formation height of the radio emission. The results obtained are consistent with the currently available data and are indicative of a close connection between RRATs, intermittent pulsars, and extreme nullers.Comment: 24 pages, no figures, references update

    Discovery of Pulsations and a Possible Spectral Feature in the X-ray Emission from Rotating Radio Transient J1819-1458

    Get PDF
    PSR J1819-1458 is a rotating radio transient (RRAT) source with an inferred surface dipole magnetic field strength of 5e13 G and a 4.26-s spin period. We present XMM-Newton observations of the X-ray counterpart of this source, CXOU J181939.1-145804, in which we identify pulsations and a possible spectral feature. The X-ray pulsations are at the period predicted by the radio ephemeris, providing an unambiguous identification with the radio source and confirmation of its neutron star nature. The X-ray pulse has a 0.3-5 keV pulsed fraction of 34% and is aligned with the expected phase of the radio pulse. The X-ray spectrum is fit well by an absorbed blackbody with kT = 0.14 keV with the addition of an absorption feature at 1 keV, with total absorbed flux of 1.5e-13 ergs/cm^2/s (0.3-5 keV). This absorption feature is well modeled by a Gaussian or resonant cyclotron scattering model, but its significance is dependent on the choice of continuum model. We find no evidence for any X-ray bursts or aperiodic variability on timescales of 6 ms to the duration of the observation and can place the most stringent limit to date of < 3e-9 ergs/cm^2/s on the absorbed 0.3-5 keV flux of any bursts.Comment: 5 figures, accepted by Ap

    Discovery of a Young Radio Pulsar in a Relativistic Binary Orbit

    Get PDF
    We report on the discovery of PSR J1141-6545, a radio pulsar in an eccentric, relativistic 5-hr binary orbit. The pulsar shows no evidence for being recycled, having pulse period P = 394 ms, characteristic age tau_c = 1.4 x 10^6 yr, and inferred surface magnetic dipole field strength B = 1.3 x 10^12 G. From the mass function and measured rate of periastron advance, we determine the total mass in the system to be (2.300 +/- 0.012) solar masses, assuming that the periastron advance is purely relativistic. Under the same assumption, we constrain the pulsar's mass to be M_p < 1.348 solar masses and the companion's mass to be M_c > 0.968 solar masses (both 99% confidence). Given the total system mass and the distribution of measured neutron star masses, the companion is probably a massive white dwarf which formed prior to the birth of the pulsar. Optical observations can test this hypothesis.Comment: 18 pages, 4 figures, Accepted for Publication in Ap
    • …
    corecore