4 research outputs found

    Dominant mutations in mtDNA maintenance gene SSBP1 cause optic atrophy and foveopathy

    No full text
    Contains fulltext : 216638.pdf (Publisher’s version ) (Open Access

    Mutation in NDUFA13/GRIM19 leads to early onset hypotonia, dyskinesia and sensorial deficiencies, and mitochondrial complex I instability

    Get PDF
    International audienceMitochondrial complex I (CI) deficiencies are causing debilitating neurological diseases, among which, the Leber Hereditary Optic Neuropathy and Leigh Syndrome are the most frequent. Here, we describe the first germinal pathogenic mutation in the NDUFA13/GRIM19 gene encoding a CI subunit, in two sisters with early onset hypotonia, dyskinesia and sensorial deficiencies, including a severe optic neuropathy. Biochemical analysis revealed a drastic decrease in CI enzymatic activity in patient muscle biopsies, and reduction of CI-driven respiration in fibroblasts, while the activities of complex II, III and IV were hardly affected. Western blots disclosed that the abundances of NDUFA13 protein, CI holoenzyme and super complexes were drastically reduced in mitochondrial fractions, a situation that was reproduced by silencing NDUFA13 in control cells. Thus, we established here a correlation between the first mutation yet identified in the NDUFA13 gene, which induces CI instability and a severe but slowly evolving clinical presentation affecting the central nervous system

    A dominant mutation in MAPKAPK3, an actor of p38 signaling pathway, causes a new retinal dystrophy involving Bruch's membrane and retinal pigment epithelium

    No full text
    International audienceInherited retinal dystrophies are clinically and genetically heterogeneous with significant number of cases remaining genetically unresolved. We studied a large family from the West Indies islands with a peculiar retinal disease, the Martinique crinkled retinal pigment epitheliopathy that begins around the age of 30 with retinal pigment epithelium (RPE) and Bruch's membrane changes resembling a dry desert land and ends with a retinitis pigmentosa. Whole-exome sequencing identified a heterozygous c.518T>C (p.Leu173Pro) mutation in MAPKAPK3 that segregates with the disease in 14 affected and 28 unaffected siblings from three generations. This unknown variant is predicted to be damaging by bioinformatic predictive tools and the mutated protein to be non-functional by crystal structure analysis. MAPKAPK3 is a serine/threonine protein kinase of the p38 signaling pathway that is activated by a variety of stress stimuli and is implicated in cellular responses and gene regulation. In contrast to other tissues, MAPKAPK3 is highly expressed in the RPE, suggesting a crucial role for retinal physiology. Expression of the mutated allele in HEK cells revealed a mislocalization of the protein in the cytoplasm, leading to cytoskeleton alteration and cytodieresis inhibition. In Mapkapk3-/- mice, Bruch's membrane is irregular with both abnormal thickened and thinned portions. In conclusion, we identified the first pathogenic mutation in MAPKAPK3 associated with a retinal disease. These findings shed new lights on Bruch's membrane/RPE pathophysiology and will open studies of this signaling pathway in diseases with RPE and Bruch's membrane alterations, such as age-related macular degeneration
    corecore