4 research outputs found

    Identification of the alpha-enolase P46 in the extracellular membrane vesicles of Bacteroides fragilis

    No full text
    <div><p> BACKGROUND Members of the Bacteroides fragilis group are the most important components of the normal human gut microbiome, but are also major opportunistic pathogens that are responsible for significant mortality, especially in the case of bacteraemia and other severe infections, such as intra-abdominal abscesses. Up to now, several virulence factors have been described that might explain the involvement of B. fragilis in these infections. The secretion of extracellular membrane vesicles (EMVs) has been proposed to play a role in pathogenesis and symbiosis in gram-negative bacteria, by releasing soluble proteins and other molecules. In B. fragilis, these vesicles are known to have haemagglutination and sialidosis activities, and also contain a capsular polysaccharide (PSA), although their involvement in virulence is still not clear. OBJECTIVE The aim of this study was to identify proteins in the EMV of the 638R B. fragilis strain by mass spectrometry, and also to assess for the presence of Bfp60, a surface plasminogen (Plg) activator, previously shown in B. fragilis to be responsible for the conversion of inactive Plg to active plasmin, which can also bind to laminin-1. METHODS B. fragilis was cultured in a minimum defined media and EMVs were obtained by differential centrifugation, ultracentrifugation, and filtration. The purified EMVs were observed by both transmission electron microscopy (TEM) and immunoelectron microscopy (IM). To identify EMV constituent proteins, EMVs were separated by 1D SDS-PAGE and proteomic analysis of proteins sized 35 kDa to approximately 65 kDa was performed using mass spectrometry (MALDI-TOF MS). FINDINGS TEM micrographs proved the presence of spherical vesicles and IM confirmed the presence of Bfp60 protein on their surface. Mass spectrometry identified 23 proteins with high confidence. One of the proteins from the B. fragilis EMVs was identified as an enolase P46 with a possible lyase activity. MAIN CONCLUSIONS Although the Bfp60 protein was not detected by proteomics, α-enolase P46 was found to be present in the EMVs of B. fragilis. The P46 protein has been previously described to be present in the outer membrane of B. fragilis as an iron-regulated protein.</p></div

    Characterization of Leptospira isolates from humans and the environment in Uruguay

    Get PDF
    ABSTRACT Laboratory diagnosis of human leptospirosis usually relies on indirect methods exploring specific immune response. Isolation and identification of the involved strains are cumbersome, but can provide biological resources for pathogenic studies and relevant information for guiding prevention and control measures. The aim of the research we are hereby reporting was the characterization of Leptospira isolates obtained from humans and the environment in Uruguay. Blood cultures were performed from early samples of 302 Uruguayan patients, mainly rural workers, and from 36 water samples taken from their living or working environments. Eight human isolates and seven environmental isolates were obtained and analyzed by end point Polymerase Chain Reaction (PCR), Multilocus Variable Number of Tandem Repeat Analysis (MLVA) and other molecular methods. Human isolates corresponded to several serogroups and serovars of Leptospira interrogans and Leptospira kirschneri species, probably reflecting the infection with similar involved Leptospira species and serovars of an extended animal reservoir in rural settings of the country, mostly dedicated to meat and dairy production. Culture-positive patients were older than usually affected workers, and presented signs and symptoms of severe illness. A high organic and circulating bacterial burden may explain an easier positive result from these workers’ samples. Environmental isolates were mainly identified as Leptospira biflexa strains, with a single L. meyeri isolate of uncertain significance
    corecore