7 research outputs found

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF

    Aumento do volume labial com o uso de toxina botulínica

    No full text
    Introdução: A aplicação da toxina botulínica na região perioral é procedimento minimamente invasivo que permite melhora substancial nos sinais de envelhecimento e aumento do volume dos lábios, com pouca documentação ainda na literatura. Objetivo: Avaliar alterações na forma e volume dos lábios com aplicações de toxina botulínica nas linhas periorais bem como a satisfação do paciente. Métodos: 19 pacientes submeteram-se a análise, registro fotográfico e medições seguidos de aplicação de toxina botulínica na região perioral. Posteriormente, foram avaliados quanto a alterações labiais e satisfação. Resultados: A maioria dos pacientes considerou os lábios moderada ou significativamente mais atraentes após a toxina (p = 0,039), e 15 mulheres notaram a mudança do lábio como um dos principais contribuintes para a melhoria global da face. Conclusões: A aplicação de toxina botulínica na região perioral provoca elevação do lábio superior, levando ao encurtamento do filtro e extensão do vermelhão. Ao aplicar a toxina na borda do vermelhão, permitimos o relaxamento do músculo orbicular, favorecendo maior efeito do tônus muscular dos músculos de elevação do lábio superior. A satisfação das pacientes com a aparência dos lábios avaliada pelas quatro perguntas adicionais (forma, volume, atração e beleza) foi positiva, com efeitos colaterais mínimos

    Study of the material of the ATLAS inner detector for Run 2 of the LHC

    No full text
    International audienceThe ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity √s=13 TeV pp collision sample corresponding to around 2.0 nb−1 collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel region is studied using reconstructed hadronic interaction and photon conversion vertices. For the forward rapidity region, the material is probed by a measurement of the efficiency with which single tracks reconstructed from pixel detector hits alone can be extended with hits on the track in the strip layers. The results of these studies have been taken into account in an improved description of the material in the ATLAS inner detector simulation, resulting in a reduction in the uncertainties associated with the charged-particle reconstruction efficiency determined from simulation

    Measurement of the inclusive jet cross-sections in proton-proton collisions at s=8 \sqrt{s}=8 TeV with the ATLAS detector

    No full text
    International audienceInclusive jet production cross-sections are measured in proton-proton collisions at a centre-of-mass energy of s=8 \sqrt{s}=8 TeV recorded by the ATLAS experiment at the Large Hadron Collider at CERN. The total integrated luminosity of the analysed data set amounts to 20.2 fb1^{−1}. Double-differential cross-sections are measured for jets defined by the anti-kt_{t} jet clustering algorithm with radius parameters of R = 0.4 and R = 0.6 and are presented as a function of the jet transverse momentum, in the range between 70 GeV and 2.5 TeV and in six bins of the absolute jet rapidity, between 0 and 3.0. The measured cross-sections are compared to predictions of quantum chromodynamics, calculated at next-to-leading order in perturbation theory, and corrected for non-perturbative and electroweak effects. The level of agreement with predictions, using a selection of different parton distribution functions for the proton, is quantified. Tensions between the data and the theory predictions are observed
    corecore