296 research outputs found

    Conditions and strategies influencing sustainability of a community-based exercise program incorporating a healthcare-community partnership for people with balance and mobility limitations in Canada: A collective case study of the Together in Movement and Exercise (TIME™) program

    Get PDF
    BackgroundCommunity-based exercise programs delivered through healthcare-community partnerships (CBEP-HCPs) are beneficial to individuals with balance and mobility limitations. For the community to benefit, however, these programs must be sustained over time.PurposeTo identify conditions influencing the sustainability of CBEP-HCPs for people with balance and mobility limitations and strategies used to promote sustainability based on experiences of program providers, exercise participants, and caregivers.MethodsUsing a qualitative collective case study design, we invited stakeholders (program providers, exercise participants, and caregivers) from sites that had been running a CBEP-HCP for people with balance and mobility limitations for ≥4 years; and sites where the CBEP-HCP had been discontinued, to participate. We used two sustainability models to inform development of interview guides and data analysis. Qualitative data from each site were integrated using a narrative approach to foster deeper understanding of within-organization experiences.ResultsTwenty-nine individuals from 4 sustained and 4 discontinued sites in Ontario (n = 6) and British Columbia (n = 2), Canada, participated. Sites with sustained programs were characterized by conditions such as need for the program in the community, presence of secure funding or cost recovery mechanisms, presence of community partners, availability of experienced and motivated instructors, and the capacity to allocate resources towards program marketing and participant recruitment. For sites where programs discontinued, diminished participation and/or enrollment and an inability to allocate sufficient financial, human, and logistical resources towards the program affected program continuity. Participants from discontinued sites also identified issues such as staff with low motivation and limited experience, and presence of competing programs within the organization or the community. Staff associated the absence of referral pathways, insufficient community awareness of the program, and the inability to recover program cost due to poor participation, with program discontinuation.ConclusionSustainability of CBEP-HCPs for people with balance and mobility limitations is influenced by conditions that exist during program implementation and delivery, including the need for the program in the community, and organization and community capacity to bear the program's financial and resource requirements. Complex interactions among these factors, in addition to strategies employed by program staff to promote sustainability, influence program sustainability

    Education in Process Systems Engineering: Why it matters more than ever and how it can be structured

    Get PDF
    This position paper is an outcome of discussions that took place at the third FIPSE Symposium in Rhodes, Greece, between June 20–22, 2016 (http://fi-in-pse.org). The FIPSE objective is to discuss open research challenges in topics of Process Systems Engineering (PSE). Here, we discuss the societal and industrial context in which systems thinking and Process Systems Engineering provide indispensable skills and tools for generating innovative solutions to complex problems. We further highlight the present and future challenges that require systems approaches and tools to address not only ‘grand’ challenges but any complex socio-technical challenge. The current state of Process Systems Engineering (PSE) education in the area of chemical and biochemical engineering is considered. We discuss approaches and content at both the unit learning level and at the curriculum level that will enhance the graduates’ capabilities to meet the future challenges they will be facing. PSE principles are important in their own right, but importantly they provide significant opportunities to aid the integration of learning in the basic and engineering sciences across the whole curriculum. This fact is crucial in curriculum design and implementation, such that our graduates benefit to the maximum extent from their learning

    A robust design of an innovative shaped rebar system using a novel uncertainty model

    Get PDF
    The current paper has investigated a newly developed re-bar system by implementing uncertainty models to optimise its geometry. The study of the design parameters of this re-bar system has been carried out utilising a novel uncertainty model that has been developed at Swansea University. The importance of this invention comes from the fact that the whole process of optimisation has been automated by linking ANSYS Workbench to MATLAB via the in-house written code, Despite the fact that in the past, ANSYS APDL was linked to MATLAB, however, the APDL was very limited to only simple geometries and boundary conditions unlike the Workbench which can simulate complex features. These shortfalls have been overcome by automating the process of optimisation, identifying the key influential parameters and the possibility to carry out a huge number of trials. Moreover, the tools that have been developed can pave the way for robust optimisation of this proposed structure. The uncertainty in the design parameters of this re-bar system is of a paramount importance in order to optimise the bond strength between the newly developed rebar and the concrete matrix as well as to fully understand the behaviour of the proposed system under pull-out conditions. The interface between the rebar and the concrete matrix was considered as a ‘cohesive zone’ whereby the interfacial area is studied as a function of the bonding strength

    The thermal emission of the exoplanets WASP-1b and WASP-2b

    Full text link
    We present a comparative study of the thermal emission of the transiting exoplanets WASP-1b and WASP-2b using the Spitzer Space Telescope. The two planets have very similar masses but suffer different levels of irradiation and are predicted to fall either side of a sharp transition between planets with and without hot stratospheres. WASP-1b is one of the most highly irradiated planets studied to date. We measure planet/star contrast ratios in all four of the IRAC bands for both planets (3.6-8.0um), and our results indicate the presence of a strong temperature inversion in the atmosphere of WASP-1b, particularly apparent at 8um, and no inversion in WASP-2b. In both cases the measured eclipse depths favor models in which incident energy is not redistributed efficiently from the day side to the night side of the planet. We fit the Spitzer light curves simultaneously with the best available radial velocity curves and transit photometry in order to provide updated measurements of system parameters. We do not find significant eccentricity in the orbit of either planet, suggesting that the inflated radius of WASP-1b is unlikely to be the result of tidal heating. Finally, by plotting ratios of secondary eclipse depths at 8um and 4.5um against irradiation for all available planets, we find evidence for a sharp transition in the emission spectra of hot Jupiters at an irradiation level of 2 x 10^9 erg/s/cm^2. We suggest this transition may be due to the presence of TiO in the upper atmospheres of the most strongly irradiated hot Jupiters.Comment: 10 pages, submitted to Ap

    A robust design of an innovative shaped rebar system using a novel uncertainty model

    Get PDF
    The current paper has investigated a newly developed re-bar system by implementing uncertainty models to optimise its geometry. The study of the design parameters of this re-bar system has been carried out utilising a novel uncertainty model that has been developed at Swansea University. The importance of this invention comes from the fact that the whole process of optimisation has been automated by linking ANSYS Workbench to MATLAB via the in-house written code, Despite the fact that in the past, ANSYS APDL was linked to MATLAB, however, the APDL was very limited to only simple geometries and boundary conditions unlike the Workbench which can simulate complex features. These shortfalls have been overcome by automating the process of optimisation, identifying the key influential parameters and the possibility to carry out a huge number of trials. Moreover, the tools that have been developed can pave the way for robust optimisation of this proposed structure. The uncertainty in the design parameters of this re-bar system is of a paramount importance in order to optimise the bond strength between the newly developed rebar and the concrete matrix as well as to fully understand the behaviour of the proposed system under pull-out conditions. The interface between the rebar and the concrete matrix was considered as a ‘cohesive zone’ whereby the interfacial area is studied as a function of the bonding strength

    Community-based interventions to prevent serious complications following spinal cord injury in Bangladesh:the CIVIC trial statistical analysis plan

    Get PDF
    Background: People who sustain spinal cord injuries in low- and middle-income countries are vulnerable to life-threatening complications after discharge. The aim of this trial is to determine the effect on all-cause mortality of a sustainable model of community-based care provided over the first 2 years after discharge. Methods and analysis: The CIVIC trial is a single centre, parallel group trial with concealed and stratified randomisation. The protocol has been previously published (BMJ Open 2016;6:e010350). This paper provides the accompanying detailed statistical plan. In total, 410 people with recent spinal cord injury who are wheelchair dependent and about to be discharged from the Centre for the Rehabilitation of the Paralysed in Bangladesh are randomised to intervention or control groups. Participants assigned to the intervention group receive a model of community-based care in which a case manager provides ongoing telephone-based support and visits participants in their homes over a 2-year period. Participants assigned to the control group receive usual care which may involve a follow-up phone call or a home visit. The primary outcome is all-cause mortality at 2 years as determined by a blinded assessor (Bangladesh does not have a death registry). The primary effectiveness analysis will compare Kaplan-Meier survival curves (time from allocation to death) in the intervention and control groups using the log-rank test (two-tailed α = 0.05). Participants will be censored at the time they were last known to be alive or at the time of the follow-up assessment. Recruitment finished in March 2018 and the last assessment will be conducted in March 2020. Discussion: The CIVIC trial will provide unbiased and precise estimates of the effectiveness of a model of community-based care for people with spinal cord injuries in Bangladesh. The results will have implications for provision of health services for people with spinal cord injuries and other conditions that cause serious disability in low-income and middle-income countries. Trial registration: ANZCTR, ACTRN12615000630516, U1111-1171-1876. Registered on 17 June 2015

    Different paths to the modern state in Europe: the interaction between domestic political economy and interstate competition

    Get PDF
    Theoretical work on state formation and capacity has focused mostly on early modern Europe and on the experience of western European states during this period. While a number of European states monopolized domestic tax collection and achieved gains in state capacity during the early modern era, for others revenues stagnated or even declined, and these variations motivated alternative hypotheses for determinants of fiscal and state capacity. In this study we test the basic hypotheses in the existing literature making use of the large date set we have compiled for all of the leading states across the continent. We find strong empirical support for two prevailing threads in the literature, arguing respectively that interstate wars and changes in economic structure towards an urbanized economy had positive fiscal impact. Regarding the main point of contention in the theoretical literature, whether it was representative or authoritarian political regimes that facilitated the gains in fiscal capacity, we do not find conclusive evidence that one performed better than the other. Instead, the empirical evidence we have gathered lends supports to the hypothesis that when under pressure of war, the fiscal performance of representative regimes was better in the more urbanized-commercial economies and the fiscal performance of authoritarian regimes was better in rural-agrarian economie

    Rotation of planet-harbouring stars

    Full text link
    The rotation rate of a star has important implications for the detectability, characterisation and stability of any planets that may be orbiting it. This chapter gives a brief overview of stellar rotation before describing the methods used to measure the rotation periods of planet host stars, the factors affecting the evolution of a star's rotation rate, stellar age estimates based on rotation, and an overview of the observed trends in the rotation properties of stars with planets.Comment: 16 pages, 4 figures: Invited review to appear in 'Handbook of Exoplanets', Springer Reference Works, edited by Hans J. Deeg and Juan Antonio Belmont

    Inhibition of Protein N-Glycosylation Blocks SARS-CoV-2 Infection

    Get PDF
    Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) extensively glycosylates its spike proteins, which are necessary for host cell invasion and the target of both vaccines and immunotherapies. These glycans are predicted to modulate spike binding to the host receptor by stabilizing its open conformation and host immunity evasion. Here, we investigated the essentiality of both the host -glycosylation pathway and SARS-CoV-2 glycans for infection. Ablation of host glycosylation using RNA interference or inhibitors, including FDA-approved drugs, reduced the spread of the infection, including that of variants B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta). Under these conditions, cells produced fewer virions and some completely lost their infectivity. Furthermore, partial enzymatic deglycosylation of intact virions showed that surface-exposed glycans are critical for cell invasion. Altogether, we propose protein glycosylation as a targetable pathway with clinical potential for treatment of COVID-19. The coronavirus SARS-CoV-2 uses its spike surface proteins to infect human cells. Spike proteins are heavily modified with several -glycans, which are predicted to modulate their function. In this work, we show that interfering with either the synthesis or attachment of spike -glycans significantly reduces the spread of SARS-CoV-2 infection , including that of several variants. As new SARS-CoV-2 variants, with various degrees of resistance against current vaccines, are likely to continue appearing, halting virus glycosylation using repurposed human drugs could result in a complementary strategy to reducing the spread of COVID-19 worldwide
    corecore