1,306 research outputs found

    Vascular complications of cancer chemotherapy

    Get PDF
    Development of new anticancer drugs has resulted in improved mortality rates and 5-year survival rates in patients with cancer. However, many of the modern chemotherapies are associated with cardiovascular toxicities that increase cardiovascular risk in cancer patients, including hypertension, thrombosis, heart failure, cardiomyopathy, and arrhythmias. These limitations restrict treatment options and might negatively affect the management of cancer. The cardiotoxic effects of older chemotherapeutic drugs such as alkylating agents, antimetabolites, and anticancer antibiotics have been known for a while. The newer agents, such as the antiangiogenic drugs that inhibit vascular endothelial growth factor signalling are also associated with cardiovascular pathology, especially hypertension, thromboembolism, myocardial infarction, and proteinuria. Exact mechanisms by which vascular endothelial growth factor inhibitors cause these complications are unclear but impaired endothelial function, vascular and renal damage, oxidative stress, and thrombosis might be important. With increasing use of modern chemotherapies and prolonged survival of cancer patients, the incidence of cardiovascular disease in this patient population will continue to increase. Accordingly, careful assessment and management of cardiovascular risk factors in cancer patients by oncologists and cardiologists working together is essential for optimal care so that prolonged cancer survival is not at the expense of increased cardiovascular events

    Drug treatment of hypertension: focus on vascular health

    Get PDF
    Hypertension, the most common preventable risk factor for cardiovascular disease and death, is a growing health burden. Serious cardiovascular complications result from target organ damage including cerebrovascular disease, heart failure, ischaemic heart disease and renal failure. While many systems contribute to blood pressure (BP) elevation, the vascular system is particularly important because vascular dysfunction is a cause and consequence of hypertension. Hypertension is characterised by a vascular phenotype of endothelial dysfunction, arterial remodelling, vascular inflammation and increased stiffness. Antihypertensive drugs that influence vascular changes associated with high BP have greater efficacy for reducing cardiovascular risk than drugs that reduce BP, but have little or no effect on the adverse vascular phenotype. Angiotensin converting enzyme ACE inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) improve endothelial function and prevent vascular remodelling. Calcium channel blockers also improve endothelial function, although to a lesser extent than ACEIs and ARBs. Mineralocorticoid receptor blockers improve endothelial function and reduce arterial stiffness, and have recently become more established as antihypertensive drugs. Lifestyle factors are essential in preventing the adverse vascular changes associated with high BP and reducing associated cardiovascular risk. Clinicians and scientists should incorporate these factors into treatment decisions for patients with high BP, as well as in the development of new antihypertensive drugs that promote vascular health

    Toxicity of cancer therapy: what the cardiologist needs to know about angiogenesis inhibitors

    Get PDF
    Clinical outcomes for patients with a wide range of malignancies have improved substantially over the last two decades. Tyrosine kinase inhibitors (TKIs) are potent signalling cascade inhibitors and have been responsible for significant advances in cancer therapy. By inhibiting vascular endothelial growth factor receptor (VEGFR)-mediated tumour blood vessel growth, VEGFR-TKIs have become a mainstay of treatment for a number of solid malignancies. However, the incidence of VEGFR-TKI-associated cardiovascular toxicity is substantial and previously under-recognised. Almost all patients have an acute rise in blood pressure, and the majority develop hypertension. They are associated with the development of left ventricular systolic dysfunction (LVSD), heart failure and myocardial ischaemia and can have effects on myocardial repolarisation. Attention should be given to rigorous baseline assessment of patients prior to commencing VEGFR-TKIs, with careful consideration of baseline cardiovascular risk factors. Baseline blood pressure measurement, ECG and cardiac imaging should be performed routinely. Hypertension management currently follows national guidelines, but there may be a future role forendothelin-1 antagonism in the prevention or treatment of VEGFR-TKI-associated hypertension. VEGFR-TKI-associated LVSD appears to be independent of dose and is reversible. Patients who develop LVSD and heart failure should be managed with conventional heart failure therapies, but the role of prophylactic therapy is yet to be defined. Serial monitoring of left ventricular function and QT interval require better standardisation and coordinated care. Management of these complex patients requires collaborative, cardio-oncology care to allow the true therapeutic potential from cancer treatment while minimising competing cardiovascular effects

    Professional guideline versus product label selection for treatment with IV thrombolysis: an analysis from SITS registry

    Get PDF
    Introduction: Thrombolysis usage in ischaemic stroke varies across sites. Divergent advice from professional guidelines and product labels may contribute. Patients and methods: We analysed SITS-International registry patients enrolled January 2010 through June 2016. We grouped sites into organisational tertiles by number of patients arriving ≀2.5 h and treated ≀3 h, percentage arriving ≀2.5 h and treated ≀3 h, and numbers treated ≀3 h. We assigned scores of 1–3 (lower/middle/upper) per variable and 2 for onsite thrombectomy. We classified sites as lower efficiency (summed scores 3–5), medium efficiency (6–8) or higher efficiency (9–11). Sites were also grouped by adherence with European product label and ESO guideline: ‘label adherent’ (>95% on-label), ‘guideline adherent’ (≄5% off-label, ≄95% on-guideline) or ‘guideline non-adherent’ (>5% off-guideline). We cross-tabulated site-efficiency and adherence. We estimated the potential benefit of universally selecting by ESO guidance, using onset-to-treatment time-specific numbers needed to treat for day 90 mRS 0–1. Results: A total of 56,689 patients at 597 sites were included: 163 sites were higher efficiency, 204 medium efficiency and 230 lower efficiency. Fifty-six sites were ‘label adherent’, 204 ‘guideline adherent’ and 337 ‘guideline non-adherent’. There were strong associations between site-efficiency and adherence (P < 0.001). Almost all ‘label adherent’ sites (55, 98%) were lower efficiency. If all patients were treated by ESO guidelines, an additional 17,031 would receive alteplase, which translates into 1922 more patients with favourable three-month outcomes. Discussion: Adherence with product labels is highest in lower efficiency sites. Closer alignment with professional guidelines would increase patients treated and favourable outcomes. Conclusion: Product labels should be revised to allow treatment of patients ≀4.5 h from onset and aged ≄80 years

    Eco‐evolutionary dynamics in response to selection on life‐history

    Get PDF
    Understanding the consequences of environmental change on ecological and evolutionary dynamics is inherently problematic because of the complex interplay between them. Using invertebrates in microcosms, we characterise phenotypic, population and evolutionary dynamics before, during and after exposure to a novel environment and harvesting over 20 generations. We demonstrate an evolved change in life-history traits (the age- and size-at-maturity, and survival to maturity) in response to selection caused by environmental change (wild to laboratory) and to harvesting (juvenile or adult). Life-history evolution, which drives changes in population growth rate and thus population dynamics, includes an increase in age-to-maturity of 76% (from 12.5 to 22 days) in the unharvested populations as they adapt to the new environment. Evolutionary responses to harvesting are outweighed by the response to environmental change (~ 1.4 vs. 4% change in age-at-maturity per generation). The adaptive response to environmental change converts a negative population growth trajectory into a positive one: an example of evolutionary rescue. © 2013 John Wiley & Sons Ltd/CNRS

    Proteostasis by STUB1/HSP70 complex controls sensitivity to androgen receptor targeted therapy in advanced prostate cancer.

    Get PDF
    Protein homeostasis (proteostasis) is a potential mechanism that contributes to cancer cell survival and drug resistance. Constitutively active androgen receptor (AR) variants confer anti-androgen resistance in advanced prostate cancer. However, the role of proteostasis involved in next generation anti-androgen resistance and the mechanisms of AR variant regulation are poorly defined. Here we show that the ubiquitin-proteasome-system (UPS) is suppressed in enzalutamide/abiraterone resistant prostate cancer. AR/AR-V7 proteostasis requires the interaction of E3 ubiquitin ligase STUB1 and HSP70 complex. STUB1 disassociates AR/AR-V7 from HSP70, leading to AR/AR-V7 ubiquitination and degradation. Inhibition of HSP70 significantly inhibits prostate tumor growth and improves enzalutamide/abiraterone treatments through AR/AR-V7 suppression. Clinically, HSP70 expression is upregulated and correlated with AR/AR-V7 levels in high Gleason score prostate tumors. Our results reveal a novel mechanism of anti-androgen resistance via UPS alteration which could be targeted through inhibition of HSP70 to reduce AR-V7 expression and overcome resistance to AR-targeted therapies

    Assessment of preoperative accelerated radiotherapy and chemotherapy in stage IIIa (N2) non-small-cell lung cancer

    Get PDF
    AbstractForty patients with N2 non-small-cell lung cancer (stage IIIA), as determined by mediastinoscopy, were entered into a preoperative neoadjuvant study of chemotherapy (platinum, 5-fluorouracil, vinblastine) and accelerated radiotherapy (150 cGy twice per day for 7 days) for two cycles. Surgical resection was then performed and followed up with an additional cycle of chemotherapy and radiotherapy. All patients completed preoperative therapy. A major clinical response was seen in 87% of patients. Thirty-five patients underwent resection (one preoperative death, one refused operation, one had deterioration of pulmonary function, and two had pleural metastases). Operative mortality rate was 5.7% (2/35). Sixty percent of patients had no complications. Major complications included pulmonary emboli (three), pneumonia (two), and myocardial infarction (one). Downstaging was seen in 46% of patients, with two patients (5.7%) having no evidence of tumor in the specimen, five patients having sterilization of all lymph nodes, and nine patients having sterilization of mediastinal nodes but positive N1 nodes. Median survival of 40 patients was 28 months, with a projected 5-year survival of 43%. Patients with downstaged disease had statistically significant improved survival compared with patients whose disease was not downstaged. (J THORAC CARDIOVASC SURG 1996;111:123-33
    • 

    corecore