27 research outputs found

    Second-Generation Antipsychotics' Effectiveness and Tolerability: A Review of Real-World Studies in Patients with Schizophrenia and Related Disorders

    Get PDF
    Despite methodological limitations, real-world studies might support clinicians by broadening the knowledge of antipsychotics' (APs) effectiveness and tolerability in different clinical scenarios and complement clinical trials. We conducted an extensive literature search in the PubMed database to evaluate the effectiveness and tolerability profiles of second-generation antipsychotics (SGAs) from real-world studies to aid clinicians and researchers in selecting the proper treatment for patients with schizophrenia and related disorders. The present review evidenced that SGAs demonstrated superior effectiveness over first-generation antipsychotics (FGAs) in relapse-free survival and psychiatric hospitalization rate and for treating negative symptoms. Persistence and adherence to therapy were higher in SGAs than FGAs. Most studies concluded that switching to long-acting injectables (LAIs) was significantly associated with a lower treatment failure rate than monotherapy with oral SGAs. Considerable improvements in general functionality, subjective well-being, and total score on global satisfaction tests, besides improved personal and social performance, were reported in some studies on patients treated with LAI SGAs. Clozapine was also associated with the lowest rates of treatment failure and greater effectiveness over the other SGAs, although with more severe side effects. Effectiveness on primary negative symptoms and cognitive deficits was rarely measured in these studies. Based on the data analyzed in the present review, new treatments are needed with better tolerability and improved effectiveness for negative, affective, and cognitive symptoms

    Absolute and relative quantitation of amylase/trypsin-inhibitors by LC-MS/MS from wheat lines obtained by CRISPR-Cas9 and RNAi

    Get PDF
    Quantitation of wheat proteins is still a challenge, especially regarding amylase/trypsin-inhibitors (ATIs). A selection of ATIs was silenced in the common wheat cultivar Bobwhite and durum wheat cultivar Svevo by RNAi and gene editing, respectively, in order to reduce the amounts of ATIs. The controls and silenced lines were analyzed after digestion to peptides by LC-MS/MS with different approaches to evaluate changes in composition of ATIs. First, a targeted method with stable isotope dilution assay (SIDA) using labeled peptides as internal standards was applied. Additionally, four different approaches for relative quantitation were conducted, in detail, iTRAQ labeled and label free quantitation (LFQ) combined with data dependent acquisition (DDA) and data independent acquisition (DIA). Quantitation was performed manually (Skyline and MASCOT) and with different proteomics software tools (PLGS, MaxQuant, and PEAKS X Pro). To characterize the wheat proteins on protein level, complementary techniques as high-performance liquid chromatography (HPLC) and gel electrophoresis were performed. The targeted approach with SIDA was able to quantitate all ATIs, even at low levels, but an optimized extraction is necessary. The labeled iTRAQ approach revealed an indistinct performance. LFQ with low resolution equipment (IonTrap) showed similar results for major ATIs, but low abundance ATIs as CM1, were not detectable. DDA measurements with an Orbitrap system and evaluation using MaxQuant showed that the relative quantitation was dependent on the wheat species. The combination of manual curation of the MaxQuant search with Skyline revealed a very good performance. The DIA approach with analytical flow found similar results compared to absolute quantitation except for some minor ATIs, which were not detected. Comparison of applied methods revealed that peptide selection is a crucial step for protein quantitation. Wheat proteomics faces challenges due to the high genetic complexity, the close relationship to other cereals and the incomplete, redundant protein database requiring sensitive, precise and accurate LC-MS/MS methods

    Delirium and Cognitive Impairment as Predisposing Factors of {COVID}-19 Infection in Neuropsychiatric Patients: A Narrative Review

    Get PDF
    SARS-CoV-2 neuroinvasive and neurotropic abilities may underlie delirium onset and neuropsychiatric outcomes. Only a limited number of studies have addressed the potential effect of SARS-CoV-2 infection on mental health so far. Most studies mainly reported the acute onset of mixed neuropsychiatric conditions in patients infected with SARS-CoV-2, characterized by agitated behavior, altered level of consciousness, and disorganized thinking, regardless of psychological or socioeconomic triggering factors. The present narrative review aims to analyze and discuss the mechanisms underlying the neuroinvasive/neurotropic properties of SARS-CoV-2 and the subsequent mental complications. Delirium appeared as a clinical manifestation of SARS-CoV-2 brain infection in some patients, without systemic or multiple organ failure symptoms. A small number of studies demonstrated that neuropsychiatric symptoms associated with COVID-19, initially presenting as a confused state, may subsequently evolve in a way that is consistent with the patients’ neuropsychiatric history. A literature analysis on this topic prevalently showed case reports and case series of patients presenting delirium or delirium-like symptoms as the main outburst of COVID-19, plus a cognitive impairment, from mild to severe, which pre-existed or was demonstrated during the acute phase or after infection. Dementia appeared as one of the most frequent predisposing factors to SARS-CoV-2 infection complicated with delirium. Instead, contrasting data emerged on the potential link between COVID-19 and delirium in patients with cognitive impairment and without a neuropsychiatric history. Therefore, clinicians should contemplate the possibility that COVID-19 appears as delirium followed by a psychiatric exacerbation, even without other systemic symptoms. In addition, cognitive impairment might act as a predisposing factor for COVID-19 in patients with delirium

    Production and characterization of wheat lines silenced in alpha amylase/trypsin inhibitor genes involved in adverse reactions to wheat

    Get PDF
    Although wheat is the most consumed crop worldwide, it is also the main factor triggering different adverse reactions, among which celiac disease, true allergies and Non Celiac Wheat Sensitivity (NCWS). Among allergies, the so called \u201cbaker\u2019s asthma\u201d, is the most common professional asthma in Europe and is caused mainly by proteins present in the soluble fraction, especially alpha-amylase/trypsin inhibitors (ATI). Recent findings indicate in this class of proteins also the main factor triggering NCWS, that at present affects people with a frequency around 1:80, higher than celiac disease (1:100), but this is still a matter of debate. On this basis, we have produced RNAi wheat plants (both durum and bread wheat) in which different ATI genes have been silenced, to be used as a proof of concept, in order to test if they have a minor impact on adverse reactions, by using in vitro tests. We have silenced CM3, CM16 and 0.28 genes and have now available several lines in T4 generation. ELISA tests and immunoblotting analysis, by using a monoclonal antibody against ATI proteins, have shown that RNAi silenced wheat kernels present a lower amount of ATI proteins. Moreover, we are characterizing these lines in relation to respiratory allergies. Protein extracts from silenced plants are being tested by using human sera of allergic patients in order to verify if a lower amount of immunogenic polypeptides is recognized in comparison to wild type untransformed plants. If this is the case, the realization of new wheat genotypes expressing a lower amount of ATI proteins can be a realistic target to be reached by classical breeding procedures

    Silencing of ATI genes involved in adverse reactions to wheat by RNAi and CRISPR-Cas9 technologies

    Get PDF
    Although wheat is consumed worldwide as a staple food, it can give rise to different adverse reactions, some of which have not been deeply characterized. They are caused mainly by wheat proteins, both gluten and non-gluten proteins. Structural and metabolic proteins, like \u3b1amylase/trypsin inhibitors (ATI) are involved in the onset of wheat allergies (bakers\u2019 asthma) and probably non-coeliac wheat sensitivity (NCWS). The ATI are encoded by a multigene family dispersed over several. Notably, WTAI-CM3 and WTAI-CM16 subunits are involved in the onset of bakers\u2019 asthma and are likely to contribute to NCWS. In this study we report the RNAi silencing of WTAI-CM3, WTAI-CM16 and WMAI-0.28 genes in the bread wheat cultivar Bobwhite and the CRISPR/Cas9 mediated gene knockout of WTAI-CM3 and WTAI-CM16 in the durum wheat cultivar Svevo. We have obtained different RNAi transgenic lines showing an effective decrease in the expression in the targeted genes. These lines do not show differences in terms of yield, but have unintended effects on the accumulation of the high molecular weight glutenin subunits which play a crucial role in the technological performances of wheat flour. Furthermore, the editing of WTAI-CM3 and WTAI-CM16 genes was obtained through a CRISPR-Cas9 multiplexing strategy in the Italian durum wheat cultivar Svevo with a marker-free approach. The regeneration of plants without selection agents allowed T0 homozygous mutant plants to be obtained without the integration in the wheat genome of CRISPR/Cas9 vectors, demonstrating the capability of CRISPR technology to produce wheat lines in a reduced time compared to conventional breeding approaches. The possibility to develop new wheat genotypes accumulating a lower amount of proteins effectively involved in such pathologies, not only offers the possibility to use them as a basis for the creation of wheat varieties with a lower impact on adverse reactions, but also to test if these proteins are actually implicated in those pathologies for which the triggering factor has yet to be established

    Delirium and Psychiatric Sequelae Associated to SARS-CoV-2 in Asymptomatic Patients With Psychiatric History and Mild Cognitive Impairment as Risk Factors: Three Case Reports

    Get PDF
    Human coronaviruses have neuroinvasive and neurotropic abilities that might explain psychiatric outcomes in affected patients. We hypothesized that delirium might be the sole clinical manifestation or even the prodrome of a psychiatric episode consistent with the mental history of a few infected patients with a preexisting diagnosed cognitive impairment. We examined three patients with preexisting mild cognitive impairment and delirium at admission for suspected SARS-CoV-2 infection. We diagnosed delirium using DSM-5 and Confusion Assessment Method (CAM) and measured consciousness level by the Glasgow Coma Scale. All the patients had no history of fever, respiratory complications, anosmia or ageusia, meningitis, and negative cerebrospinal fluid analysis for SARS-CoV-2. Our first patient had no psychiatric history, the second reported only a depressive episode, and the third had a history of bipolar disorder dated back to 40 years before. In the first patient, delirium resolved 2 days following the admission. The other two patients recovered in 4 and 14 days, and delirium appeared as the prodrome of a new psychiatric episode resembling past events. Clinicians should monitor the possibility that SARS-CoV-2 presence in the brain might clinically manifest in the form of delirium and acute psychiatric sequelae, even without other systemic symptoms. Psychiatric history and preexisting mild cognitive impairment are to be considered as predisposing factors for COVID-19 sequelae in delirium patients

    CRISPR towards a Sustainable Agriculture

    No full text
    Climate change and the need to feed an increasing population undermines food production and safety, representing the reasons behind the development of a new agriculture that is much more sustainable, productive and accessible worldwide. Genome editing and, in particular, clustered regularly interspaced palindromic repeats/CRISPR-associated protein (CRISPR/Cas) tools will play a major role in plant breeding to address these concerns. CRISPR/Cas includes a series of genome editing tools relying on the recognition and cleavage of target DNA/RNA sequences to introduce specific mutations

    CRISPR towards a Sustainable Agriculture

    No full text
    Climate change and the need to feed an increasing population undermines food production and safety, representing the reasons behind the development of a new agriculture that is much more sustainable, productive and accessible worldwide. Genome editing and, in particular, clustered regularly interspaced palindromic repeats/CRISPR-associated protein (CRISPR/Cas) tools will play a major role in plant breeding to address these concerns. CRISPR/Cas includes a series of genome editing tools relying on the recognition and cleavage of target DNA/RNA sequences to introduce specific mutations
    corecore