25 research outputs found

    Dielectric nano-antennas for strain engineering in atomically thin two-dimensional semiconductors

    Get PDF
    Atomically thin two-dimensional semiconducting transition metal dichalcogenides (TMDs) can withstand large levels of strain before their irreversible damage occurs. This unique property offers a promising route for control of the optical and electronic properties of TMDs, for instance by depositing them on nano-structured surfaces, where position-dependent strain can be produced on the nano-scale. Here, we demonstrate strain-induced modifications of the optical properties of mono- and bilayer TMD WSe2_2 placed on photonic nano-antennas made from gallium phosphide (GaP). Photoluminescence (PL) from the strained areas of the TMD layer is enhanced owing to the efficient coupling with the confined optical mode of the nano-antenna. Thus, by following the shift of the PL peak, we deduce the changes in the strain in WSe2_2 deposited on the nano-antennas of different radii. In agreement with the presented theory, strain up to 1.4%\approx 1.4 \% is observed for WSe2_2 monolayers. We also estimate that >3%>3\% strain is achieved in bilayers, accompanied with the emergence of a direct bandgap in this normally indirect-bandgap semiconductor. At cryogenic temperatures, we find evidence of the exciton confinement in the most strained nano-scale parts of the WSe2_2 layers, as also predicted by our theoretical model. Our results, of direct relevance for both dielectric and plasmonic nano-antennas, show that strain in atomically thin semiconductors can be used as an additional parameter for engineering light-matter interaction in nano-photonic devices

    Enhanced light-matter interaction in an atomically thin semiconductor coupled with dielectric nano-antennas

    Get PDF
    Unique structural and optical properties of atomically thin two-dimensional semiconducting transition metal dichalcogenides enable in principle their efficient coupling to photonic cavities having the optical mode volume close to or below the diffraction limit. Recently, it has become possible to make all-dielectric nano-cavities with reduced mode volumes and negligible non-radiative losses. Here, we realise low-loss high-refractive-index dielectric gallium phosphide (GaP) nano-antennas with small mode volumes coupled to atomic mono- and bilayers of WSe2. We observe a photoluminescence enhancement exceeding 10(4) compared with WSe2 placed on planar GaP, and trace its origin to a combination of enhancement of the spontaneous emission rate, favourable modification of the photoluminescence directionality and enhanced optical excitation efficiency. A further effect of the coupling is observed in the photoluminescence polarisation dependence and in the Raman scattering signal enhancement exceeding 10(3). Our findings reveal dielectric nano-antennas as a promising platform for engineering light-matter coupling in two-dimensional semiconductors

    Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas

    Get PDF
    Single photon emitters in atomically-thin semiconductors can be deterministically positioned using strain induced by underlying nano-structures. Here, we couple monolayer WSe2 to high-refractive-index gallium phosphide dielectric nano-antennas providing both optical enhancement and monolayer deformation. For single photon emitters formed on such nano-antennas, we find very low (femto-Joule) saturation pulse energies and up to 104 times brighter photoluminescence than in WSe2 placed on low-refractive-index SiO2 pillars. We show that the key to these observations is the increase on average by a factor of 5 of the quantum efficiency of the emitters coupled to the nano-antennas. This further allows us to gain new insights into their photoluminescence dynamics, revealing the roles of the dark exciton reservoir and Auger processes. We also find that the coherence time of such emitters is limited by intrinsic dephasing processes. Our work establishes dielectric nano-antennas as a platform for high-efficiency quantum light generation in monolayer semiconductors

    Hybrid plasmonic waveguide coupling of photons from a single molecule

    Get PDF
    We demonstrate the emission of photons from a single molecule into a hybrid gap plasmon waveguide. Crystals of anthracene, doped with dibenzoterrylene (DBT), are grown on top of the waveguides. We investigate a single DBT molecule coupled to the plasmonic region of one of the guides and determine its in-plane orientation, excited state lifetime, and saturation intensity. The molecule emits light into the guide, which is remotely out-coupled by a grating. The second-order autocorrelation and cross-correlation functions show that the emitter is a single molecule and that the light emerging from the grating comes from that molecule. The coupling efficiency is found to be βWG = 11.6(1.5)%. This type of structure is promising for building new functionality into quantum-photonic circuits, where localized regions of strong emitter-guide coupling can be interconnected by low-loss dielectric guides

    Oestrogens and Progestagens: Synthesis and Action in the Brain

    No full text
    When steroids, such as pregnenolone, progesterone and oestrogen, are synthesised de novo in neural tissues, they are more specifically referred to as neurosteroids. These neurosteroids bind specific receptors to promote essential brain functions. Pregnenolone supports cognition and protects mouse hippocampal cells against glutamate and amyloid peptide-induced cell death. Progesterone promotes myelination, spinogenesis, synaptogenesis, neuronal survival and dendritic growth. Allopregnanolone increases hippocampal neurogenesis, neuronal survival and cognitive functions. Oestrogens, such as oestradiol, regulate synaptic plasticity, reproductive behaviour, aggressive behaviour and learning. In addition, neurosteroids are neuroprotective in animal models of Alzheimer\u27s disease, Parkinson\u27s disease, brain injury and ageing. Using in situ hybridisation and/or immunohistochemistry, steroidogenic enzymes, including cytochrome P450 side-chain cleavage, 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase, cytochrome P450arom, steroid 5α-reductase and 3α-hydroxysteroid dehydrogenase, have been detected in numerous brain regions, including the hippocampus, hypothalamus and cerebral cortex. In the present review, we summarise some of the studies related to the synthesis and function of oestrogens and progestagens in the central nervous system

    Epigenetic modifier Kdm6a/Utx controls the specification of hypothalamic neuronal subtypes in a sex-dependent manner

    No full text
    Kdm6a is an X-chromosome-linked H3K27me2/3 demethylase that promotes chromatin accessibility and gene transcription and is critical for tissue/cell-specific differentiation. Previous results showed higher Kdm6a levels in XX than in XY hypothalamic neurons and a female-specific requirement for Kdm6a in mediating increased axogenesis before brain masculinization. Here, we explored the sex-specific role of Kdm6a in the specification of neuronal subtypes in the developing hypothalamus. Hypothalamic neuronal cultures were established from sex-segregated E14 mouse embryos and transfected with siRNAs to knockdown Kdm6a expression (Kdm6a-KD). We evaluated the effect of Kdm6a-KD on Ngn3 expression, a bHLH transcription factor regulating neuronal sub-specification in hypothalamus. Kdm6a-KD decreased Ngn3 expression in females but not in males, abolishing basal sex differences. Then, we analyzed Kdm6a-KD effect on Ascl1, Pomc, Npy, Sf1, Gad1, and Th expression by RT-qPCR. While Kdm6a-KD downregulated Ascl1 in both sexes equally, we found sex-specific effects for Pomc, Npy, and Th. Pomc and Th expressed higher in female than in male neurons, and Kdm6a-KD reduced their levels only in females, while Npy expressed higher in male than in female neurons, and Kdm6a-KD upregulated its expression only in females. Identical results were found by immunofluorescence for Pomc and Npy neuropeptides. Finally, using ChIP-qPCR, we found higher H3K27me3 levels at Ngn3, Pomc, and Npy promoters in male neurons, in line with Kdm6a higher expression and demethylase activity in females. At all three promoters, Kdm6a-KD induced an enrichment of H3K27me3 only in females. These results indicate that Kdm6a plays a sex-specific role in controlling the expression of transcription factors and neuropeptides critical for the differentiation of hypothalamic neuronal populations regulating food intake and energy homeostasis.This study was supported by grants BFU2017-82754-R and PID 2020-115019RB-I00 from Agencia Estatal de Investigación (AEI), Spain, and co-funded by Fondo Europeo de Desarrollo Regional (FEDER) and by Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain

    Neurogenin 3 mediates sex chromosome effects on the generation of sex differences in hypothalamic neuronal development

    Get PDF
    The organizational action of testosterone during critical periods of development is the cause of numerous sex differences in the brain. However, sex differences in neuritogenesis have been detected in primary neuronal hypothalamic cultures prepared before the peak of testosterone production by fetal testis. In the present study we assessed the hypothesis of that cell-autonomous action of sex chromosomes can differentially regulate the expression of the neuritogenic gene neurogenin 3 (Ngn3) in male and female hypothalamic neurons, generating sex differences in neuronal development. Neuronal cultures were prepared from male and female E14 mouse hypothalami, before the fetal peak of testosterone. Female neurons showed enhanced neuritogenesis and higher expression of Ngn3 than male neurons. The silencing of Ngn3 abolished sex differences in neuritogenesis, decreasing the differentiation of female neurons. The sex difference in Ngn3 expression was determined by sex chromosomes, as demonstrated using the four core genotypes mouse model, in which a spontaneous deletion of the testis-determining gene Sry from the Y chromosome was combined with the insertion of the Sry gene onto an autosome. In addition, the expression of Ngn3, which is also known to mediate the neuritogenic actions of estradiol, was increased in the cultures treated with the hormone, but only in those from male embryos. Furthermore, the hormone reversed the sex differences in neuritogenesis promoting the differentiation of male neurons. These findings indicate that Ngn3 mediates both cell-autonomous actions of sex chromosomes and hormonal effects on neuritogenesis.Peer reviewedPeer Reviewe

    Histone h4 acetylation involvement in sexually dimorphic aromatase expression of developing mouse brain

    No full text
    During early development, sex chromosome complement (SCC) regulates a sexually dimorphic gene expression in limbic regions of the mouse brain. Furthermore, aromatase and ERβ expression are higher in amygdala neurons of XY than XX embryos at embryonic day (E) 15, before of critical period of hormone-induced brain masculinization. Epigenetic has been proposed as mediator of hormonal and genetic sexual differentiation of the brain. We aimed to study the role of SCC on the epigenetic mechanisms involved in brain sexual differentiation. Four core genotypes mouse model (FCG) was employed to evaluate by RT- qPCR the epigenetic machinery involved in DNA methylation and histone deacetylation in amygdala at E15. Moreover, the epigenetic regulation of aromatase and ERβ expression was analyzed by Chromatin Immunoprecipitation (ChIP-qPCR) from E15 amygdala primary neuronal cultures segregated by sex using anti-Acetyl-H3 and -H4 antibodies. Independent cultures were performed to evaluate the effect of pharmacological inhibition of DNA methylation (using zebularine) on the aromatase gene expression by RT-qPCR. We found that SCC regulate the sexually dimorphic expression of de novo DNA methyltransferase 3a and 3b, and histone deacetylase 2 and 8 with higher expression in XX than XY embryos. Zebularine did not change aromatase expression levels neither in male nor female cultures. However, ChIP assays showed an enrichment of Acetyl-H4 in the male aromatase promoter that was not observed in female cultures. The ERβ promoter did not show a significant enrichment of the explored marks. In summary, the acetylation of H4 could be contributing to relax chromatin structure in male amygdala neurons, thereby facilitating the access of the transcriptional machinery to the aromatase gene promoter leading to the higher expression previously observed in males. These results contribute to a better understanding of the role of epigenetics in the establishment of brain sex differences independently of hormonal masculinization

    Monitoring plasmonic hot-carrier chemical reactions at the single particle level

    Get PDF
    Plasmon excitation in metal nanoparticles triggers the generation of highly energetic charge carriers that, when properly manipulated and exploited, can mediate chemical reactions. Single-particle techniques are key to unearthing the underlying mechanisms of hot-carrier generation, transport and injection, as well as to disentangling the role of the temperature increase and the enhanced near-field at the nanoparticle-molecule interface. Gaining nanoscopic insight into these processes and their interplay could aid in the rational design of plasmonic photocatalysts. Here, we present three different approaches to monitor hot-carrier reactivity at the single-particle level. We use a combination of dark-field microscopy and photoelectrochemistry to track a hot-hole driven reaction on a single Au nanoparticle. We image hot-electron reactivity with sub-particle spatial resolution using nanoscopy techniques. Finally, we push the limits by looking for a hot-electron induced chemical reaction that generates a fluorescent product, which should enable imaging plasmonic photocatalysis at the single-particle and single-molecule levels

    Anapole excitations in oxygen vacancy-rich TiO2-x nanoresonators: tuning the absorption for photocatalysis in the visible.

    No full text
    Research on optically resonant dielectric nanostructures has accelerated the development of photonic applications, driven by their ability to strongly confine light on the nanoscale. However, since dielectric resonators are typically operated below their bandgap to minimize optical losses, the usage of dielectric nanoantenna concepts for absorption enhancement has largely remained unexplored. In this work, we realize engineered nanoantennas composed of photocatalytic dielectrics and demonstrate their increased light harvesting capabilities in otherwise weakly absorptive spectral regions. In particular, we employ anapole excitations, which are known for their strong light confinement, in nanodisks of oxygen-vacancy-rich TiO2-x, a prominent photocatalyst that provides a powerful platform for exploring concepts in absorption enhancement in tunable nanostructures. We show that by varying the nanodisk geometry, we can shift the anapole wavelength into resonance with optical transitions associated with the sub-bandgap oxygen vacancy (VO) states and thereby increase visible light absorption. The arising photocatalytic effect is monitored on the single particle level using the well-established photocatalytic silver reduction reaction on TiO2. With the freedom of changing the optical properties of TiO2 through tuning the abundance of VO-states we discuss the interplay between cavity damping and the anapole-assisted field confinement for absorption enhancement. This concept is general and can be extended to other catalytic materials with higher refractive indices
    corecore