7,450 research outputs found
Recommended from our members
Description and Skill Evaluation of Experimental Dynamical Seasonal Forecasts of Tropical Cyclone Activity at IRI
The International Research Institute for Climate and Society has been issuing experimental seasonal tropical cyclone activity forecasts for several ocean basins since early 2003. In this paper we describe the method used to obtain these forecasts, and evaluate their performance. The forecasts are based on tropical cyclone-like features detected and tracked in a low-resolution climate model, namely ECHAM4.5. The simulation skill of the model using historical observed sea surface temperatures (SSTs) over several decades, as well as with SST anomalies persisted from the month ending at the forecast start time, is discussed. These simulation skills are compared with skills of purely statistically based hindcasts using as predictors observed SSTs preceding the forecast start time. For the recent 6-year period during which real-time forecasts have been made, the skill of the raw model output is compared with that of the subjectively modified probabilistic forecasts actually issued. Despite variations from one basin to another, the hindcast skills of the dynamical and statistical forecast approaches are found, overall, to be approximately equivalent. The dynamical forecasts require statistical post-prossessing (calibration) to be competitive with, and in some circumstances superior to, the statistical models. Hence, during the recent period of real-time forecasts, the subjective forecasts are found to have resulted in probabilistic skill better than that of the raw model output, primarily because of the forecasters' elimination of the systematic bias of "overconfidence" in the model's forecasts. Prospects for the future improvement of dynamical tropical cyclone prediction are considered
Vacuum fluctuations of a scalar field near a reflecting boundary and their effects on the motion of a test particle
The contribution from quantum vacuum fluctuations of a real massless scalar
field to the motion of a test particle that interacts with the field in the
presence of a perfectly reflecting flat boundary is here investigated. There is
no quantum induced dispersions on the motion of the particle when it is alone
in the empty space. However, when a reflecting wall is introduced, dispersions
occur with magnitude dependent on how fast the system evolves between the two
scenarios. A possible way of implementing this process would be by means of an
idealized sudden switching, for which the transition occurs instantaneously.
Although the sudden process is a simple and mathematically convenient
idealization it brings some divergences to the results, particularly at a time
corresponding to a round trip of a light signal between the particle and the
wall. It is shown that the use of smooth switching functions, besides
regularizing such divergences, enables us to better understand the behavior of
the quantum dispersions induced on the motion of the particle. Furthermore, the
action of modifying the vacuum state of the system leads to a change in the
particle energy that depends on how fast the transition between these states is
implemented. Possible implications of these results to the similar case of an
electric charge near a perfectly conducting wall are discussed.Comment: 17 pages, 8 figure
A 43-Gbps Lithium Niobate Modulator Driver Module
This paper describes the realization of a 43-Gbps Lithium Niobate modulator driver module. The NRZ driver module utilizes four stages of GaAs p-HEMT MMIC amplifiers integrated with an output level detector and feedback loop to provide thermal stability and external control of the output swing. The bias and loop control circuitry are contained in the housing on a PC board external to the sealed MIC section. The integrated module (50.8 x 73.4 x 9.5 mm 3) provides 6.0 Vp-p controllable single-ended output voltage while dissipating only 4 watt
Produção de uvas para processamento no sistema de condução Scott Henry, em região tropical do Brasil.
bitstream/CNPUV/8813/1/cot078.pd
Produção de uva Isabel para processamento, no sistema GDC, em região tropical do Brasil.
bitstream/CNPUV/8967/1/cot079.pd
The highest-speed local dark matter particles come from the Large Magellanic Cloud
Using N-body simulations of the Large Magellanic Cloud (LMC's) passage through the Milky Way (MW), tailored to reproduce observed kinematic properties of both galaxies, we show that the high-speed tail of the Solar Neighborhood dark matter distribution is overwhelmingly of LMC origin. Two populations contribute at high speeds: 1) Particles that were once bound to the LMC, and 2) MW halo particles that have been accelerated owing to the response of the halo to the recent passage of the LMC. These particles reach speeds of 700-900 km/s with respect to the Earth, near or somewhat higher that the local escape speed of the MW. The high-speed particles follow trajectories similar to the Solar reflex motion, with peak velocities reached in June. For low-mass dark matter, these high-speed particles can dominate the signal in direct-detection experiments, extending the reach of the experiments to lower mass and elastic scattering cross sections even with existing data sets. Our study shows that even non-disrupted MW satellite galaxies can leave a significant dark matter footprint in the Solar Neighborhood.Open access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
- …