5 research outputs found

    Modeling Climate Impacts on Tree Growth to Assess Tree Vulnerability to Drought During Forest Dieback

    Get PDF
    Forest dieback because of drought is a global phenomenon threatening particular tree populations. Particularly vulnerable stands are usually located in climatically stressing locations such as xeric sites subjected to seasonal drought. These tree populations show a pronounced loss of vitality, growth decline, and high mortality in response to extreme climate events such as heat waves and droughts. However, dieback events do not uniformly affect stands, with some trees showing higher symptoms of drought vulnerability than other neighboring conspecifics. In this study, we investigated if trees showing different vulnerabilities to dieback showed lower growth rates (Grs) and higher sensitivities to the climate in the past using dendroecology and the Vaganov-Shashkin (VS) process-based growth model. We studied two Pinus pinaster stands with contrasting Grs showing recent dieback in the Iberian System, north-eastern Spain. We compared coexisting declining (D) and non-declining (ND) trees with crown defoliation values above and below the 50% threshold, respectively. The mean growth rate was lower in D than in ND trees in the two stands. The two vigor classes showed a growth divergence prior to the dieback onset and different responsiveness to climate. The ND trees were more responsive to changes in spring water balance and soil moisture than D trees, indicating a loss of growth responsiveness to the climate in stressed trees. Such an interaction between water availability and vigor was reflected by the VS-model simulations, which provided evidence for the observation that growth was mainly limited by low soil moisture in both sites. Such an interaction between water availability and vigor was reflected by the VS-model simulations, which provided evidence for the observation that growth was mainly limited by low soil moisture in both sites. The presented comparisons indicated different stand vulnerabilities to drought contingent on-site conditions. Further research should investigate the role played by environmental conditions and individual features such as access to soil water or hydraulic traits and implement them in process-based growth models to better forecast dieback. © Copyright © 2021 Valeriano, Gazol, Colangelo, González de Andrés and Camarero

    Tree-ring density and carbon isotope composition are early-warning signals of drought-induced mortality in the drought tolerant Canary Island pine

    Get PDF
    Tree death is not always preceded by a visible decline in vigor (canopy dieback) or a progressive loss in crown volume. Identifying early-warning signals of incipient decline can help to implement the necessary measures to prevent tree death. The aim of this work is to understand what functional alterations preceded the massive drought-induced death of adult Pinus canariensis trees in an arid stand, located in the Canary Islands. To this aim, we analyzed interannual variations in earlywood and latewood width, wood density and anatomy, and carbon isotope composition, and the relationships among these variables, in dead and living trees from 1980 to 2013. Dead trees grew less since the 1990's, produced fewer parenchyma rays and resin canals, and exhibited a trend of decreasing latewood density and a marked shift in carbon isotope discrimination over the last 34 years that were reversed in living trees. Higher wood density in living trees resulted from thicker tracheid cell walls rather than narrower lumens. The intrinsic water use efficiency shifted from higher to lower values in dead trees after the 2000s. These results suggest a carbon limitation to maintain hydraulic safety under xylem tension, as well as to maintain storage and defense capacity, which can render trees more vulnerable to severe drought episodes. A long-term trend of decreasing tree-ring density and a reduced intrinsic water use efficiency in the short-term can be early-warning signals of carbon limitation and tree decline in drought-stressed P. canariensis. The analysis of these variables can be used to assess tree decline risks in similarly vulnerable conifer populations inhabiting drought-prone regions

    Growth and carbon isotopes of Mediterranean trees reveal contrasting responses to increased carbon dioxide and drought

    No full text
    Forest dynamics will depend upon the physiological performance of individual tree species under more stressful conditions caused by climate change. In order to compare the idiosyncratic responses of Mediterranean tree species (Quercus faginea, Pinus nigra, Juniperus thurifera) coexisting in forests of central Spain, we evaluated the temporal changes in secondary growth (basal area increment; BAI) and intrinsic water-use efficiency (iWUE) during the last four decades, determined how coexisting species are responding to increases in atmospheric CO2 concentrations (Ca) and drought stress, and assessed the relationship among iWUE and growth during climatically contrasting years. All species increased their iWUE (ca. +15 to +21 %) between the 1970s and the 2000s. This increase was positively related to Ca for J. thurifera and to higher Ca and drought for Q. faginea and P. nigra. During climatically favourable years the study species either increased or maintained their growth at rising iWUE, suggesting a higher CO2 uptake. However, during unfavourable climatic years Q. faginea and especially P. nigra showed sharp declines in growth at enhanced iWUE, likely caused by a reduced stomatal conductance to save water under stressful dry conditions. In contrast, J. thurifera showed enhanced growth also during unfavourable years at increased iWUE, denoting a beneficial effect of Ca even under climatically harsh conditions. Our results reveal significant inter-specific differences in growth driven by alternative physiological responses to increasing drought stress. Thus, forest composition in the Mediterranean region might be altered due to contrasting capacities of coexisting tree species to withstand increasingly stressful conditions. © 2013 Springer-Verlag Berlin Heidelberg
    corecore