56 research outputs found

    MOOC (Massive Open Online Course): una moda o una proposta de futur?

    Get PDF
    Podeu consultar la Vuitena trobada de professorat de Ciències de la Salut completa a: http://hdl.handle.net/2445/6652

    Heteromeric nicotinic receptors are involved in the sensitization and addictive properties of MDMA in mice

    Get PDF
    We have investigated the effect of nicotinic receptor ligands in the behavioral sensitization (hyperlocomotion) and rewarding properties (conditioned place preference paradigm, CPP) of 3,4-methylenedioxy-methamphetamine (MDMA) in mice. Each animal received intraperitoneal pretreatment with either saline, dihydro-β-erythroidine (DHβE, 1 mg/kg) or varenicline (VAR, 0.3 mg/kg), 15 min prior to subcutaneous saline or MDMA (5 mg/kg), for 10 consecutive days. On day 1, both DHβE and VAR inhibited the MDMA-induced hyperlocomotion. After 10 days of treatment, MDMA induced a hyperlocomotion that was not reduced (rather enhanced) in antagonist-pretreated animals. This early hyperlocomotion was accompanied by a significant increase in heteromeric nicotinic receptors in cortex that was not blocked by DHβE or VAR. Behavioral sensitization to MDMA was highest 2 weeks after the discontinuation of MDMA treatment. This additional increase in sensitivity was prevented in animals pretreated with DHβE or VAR. At this time, MDMA-treated mice showed a significant increase in heteromeric receptors in cortex that was prevented by DHβE and VAR. An involvement of α7 nicotinic receptors in this effect is ruled out. MDMA (10 mg/kg) induced positive CPP that was abolished by DHβE (2 mg/kg) and VAR (2 mg/kg). Moreover, chronic nicotine pretreatment (2 mg/kg, ip, b.i.d., for 14 days) caused MDMA, administered at a low dose (3 mg/kg), to induce CPP, which would otherwise not occur. Finally, present results point out that heteromeric nicotinic receptors are involved in locomotor sensitization and addictive potential induced by MDMA. Thus, varenicline might be a useful drug to treat both tobacco and MDMA abuse at once

    3,4-Methylenedioxy-methamphetamine induces in vivo regional up-regulation of central nicotinic receptors in rats and potentiates the regulatory effects of nicotine on these receptors

    Full text link
    Nicotine (NIC), the main psychostimulant compound of smoked tobacco, exerts its effects through activation of central nicotinic acetylcholine receptors (nAChR), which become up-regulated after chronic administration. Recent work has demonstrated that the recreational drug 3,4-methylenedioxymethamphetamine (MDMA) has affinity for nAChR and also induces up-regulation of nAChR in PC 12 cells. Tobacco and MDMA are often consumed together. In the present work we studied the in vivo effect of a classic chronic dosing schedule of MDMA in rats, alone or combined with a chronic schedule of NIC, on the density of nAChR and on serotonin reuptake transporters. MDMA induced significant decreases in [3H]paroxetine binding in the cortex and hippocampus measured 24 h after the last dose and these decreases were not modified by the association with NIC. In the prefrontal cortex, NIC and MDMA each induced significant increases in [3H]epibatidine binding (29.5 and 34.6%, respectively) with respect to saline-treated rats, and these increases were significantly potentiated (up to 72.1%) when the two drugs were associated. Also in this area, [3H]methyllycaconitine binding was increased a 42.1% with NIC + MDMA but not when they were given alone. In the hippocampus, MDMA potentiated the a7 regulatory effects of NIC (raising a 25.5% increase to 52.5%) but alone was devoid of effect. MDMA had no effect on heteromeric nAChR in striatum and a coronal section of the midbrain containing superior colliculi, geniculate nuclei, substantia nigra and ventral tegmental area. Specific immunoprecipitation of solubilised receptors suggests that the up-regulated heteromeric nAChRs contain a4 and b2 subunits. Western blots with specific a4 and a7 antibodies showed no significant differences between the groups, indicating that, as reported for nicotine, up-regulation caused by MDMA is due to post-translational events rather than increased receptor synthesis

    Serotonin is involved in the psychostimulant and hypothermic effect of 4-methylamphetamine in rats.

    Get PDF
    4-Methylamphetamine (4-MA) has recently emerged as a designer drug of abuse in Europe and it is consumed always with amphetamine. There have been reported some deaths and non-fatal intoxications related to 4-MA. We investigated the changes in locomotor activity and body temperature after 4-MA administration to male Sprague-Dawley rats. Our experiments were carried out at a normal or high ambient temperature. 4-MA (2.5-10 mg/Kg, given subcutaneously) increased, in a dose-dependent manner, the horizontal locomotor activity that was significantly reduced by ketanserin, p-cholorophenylalanine (pCPA) or haloperidol, but not by pindolol. In addition, we have studied the effect of 4-MA on core body temperature by means of an implanted electronic thermograph, enabling continuous measurement of body temperature. We observed a dose-dependent hypothermic response to 4-MA that reached a maximum 45 min after a single injection. We also evidenced slight tachyphylaxis to the hypothermic effect when 4-MA was administered four times in a 2 h interval. The pre-treatment of animals with pCPA or pindolol, but not with ketanserin, fully abolished the hypothermic effect of 4-MA. With all that, we conclude that hypothermia induced by 4-MA is due to the release of 5-HT which activates postsynaptic 5-HT1A receptors

    Effect of the combination of mephedrone plus ethanol on serotonin and dopamine release in the nucleus accumbens and medial prefrontal cortex of awake rats

    Get PDF
    Cathinones, such as mephedrone (Meph), are often co-abused with alcoholic drinks. In the present study, we investigated the combined effects of Meph plus ethanol (EtOH) on neurotransmitter release in the nucleus accumbens (NAc) and the medial prefrontal cortex (mPFC). A guide canula was stereotaxically implanted into either the NAc or the mPFC of male Sprague-Dawley rats. Seven days after surgery, a microdialysis probe was inserted and rats were administered saline, EtOH (1 g/kg, i.p.), Meph (25 mg/kg, s.c.), or their combination, and dialysates were collected. Serotonin (5-HT), dopamine (DA), and their metabolites (5-HIAA, DOPAC and HVA) were determined through high-pressure liquid chromatography coupled to mass spectrometry. 5-HT and DA peaked 40 min after Meph administration (with or without EtOH co-treatment) in both areas. EtOH combined with Meph increased the 5-HT release compared with the rats receiving Meph alone (85% in NAc, 65% in mPFC), although the overall change in the area under the curve only reached statistical significance in the NAc. In mPFC, the increased release of 5-HT lasted longer in the combination than that in the Meph group. Moreover, EtOH potentiated the psychostimulant effect of Meph measured as a locomotor activity. Given that both 5-HT and DA are also related with reward and impulsivity, the observed effects point to an increased risk of abuse liability when combining Meph with EtOH compared with consuming these drugs alone

    Repeated doses of methylone, a new drug of abuse, induce changes in serotonin and dopamine systems in the mouse

    Get PDF
    Rationale Methylone, a new drug of abuse sold as"bath salts' has similar effects to ecstasy or cocaine. Objective We have investigated changes in dopaminergic and serotoninergic markers, indicative of neuronal damage, induced by methylone in the frontal cortex, hippocampus and striatum of mice and according two different treatment schedules. Methods Methylone was given subcutaneously to male Swiss CD1 mice and at an ambient temperature of 26ºC. Treatment A: three doses of 25 mg/Kg at 3.5 h interval between doses for two consecutive days. Treatment B: four doses of 25 mg/Kg at 3 h interval in one day. Results Repeated methylone administration induced hyperthermia and a significant loss in body weight. Following treatment A, methylone induced transient dopaminergic (frontal cortex) and serotoninergic (hippocampus) impairment. Following treatment B, transient dopaminergic (frontal cortex) and serotonergic (frontal cortex and hippocampus) changes 7 days after treatment were found. We found evidence of astrogliosis in the CA1 and the dentate gyrus of the hippocampus following treatment B. The animals also showed an increase in immobility time in the forced swim test, pointing to a depressive-like behavior. In cultured cortical neurons, methylone (for 24 and 48 h) did not induce a remarkable cytotoxic effect. Conclusions The neural effects of methylone differ depending upon the treatment schedule. Neurochemical changes elicited by methylone are apparent when administered at an elevated ambient temperature, four times per day at 3 h intervals, which is in accordance with its short half-life

    Dose and time-dependent selective neurotoxicity induced by mephedrone in mice.

    Get PDF
    Mephedrone is a drug of abuse marketed as 'bath salts'. There are discrepancies concerning its long-term effects. We have investigated the neurotoxicity of mephedrone in mice following different exposition schedules. Schedule 1: four doses of 50 mg/kg. Schedule 2: four doses of 25 mg/kg. Schedule 3: three daily doses of 25 mg/kg, for two consecutive days. All schedules induced, in some animals, an aggressive behavior and hyperthermia as well as a decrease in weight gain. Mephedrone (schedule 1) induced dopaminergic and serotoninergic neurotoxicity that persisted 7 days after exposition. At a lower dose (schedule 2) only a transient dopaminergic injury was found. In the weekend consumption pattern (schedule 3), mephedrone induced dopamine and serotonin transporter loss that was accompanied by a decrease in tyrosine hydroxylase and tryptophan hydroxylase 2 expression one week after exposition. Also, mephedrone induced a depressive-like behavior, as well as a reduction in striatal D2 density, suggesting higher susceptibility to addictive drugs. In cultured cortical neurons, mephedrone induced a concentration-dependent cytotoxic effect. Using repeated doses for 2 days in an elevated ambient temperature we evidenced a loss of frontal cortex dopaminergic and hippocampal serotoninergic neuronal markers that suggest injuries at nerve endings

    7,8-Dihydroxyflavone blocks the development of behavioral sensitization to MDPV, but not to cocaine: Differential role of the BDNF-TrkB pathway

    Get PDF
    3,4-Methylenedioxypyrovalerone (MDPV) acts as a dopamine transporter blocker and exerts powerful psychostimulant effects. In this study we aimed to investigate the bidirectional cross-sensitization between MDPV and cocaine, as well as to evaluate the role of the BDNF-TrkB signaling pathway in the development of locomotor sensitization to both drugs. Mice were treated with MDPV (1.5 mg/kg) or cocaine (10 or 15 mg/kg) once daily for 5 days. After withdrawal (10 days), animals were challenged with cocaine (8 mg/kg) or MDPV (1 mg/kg). For biochemical determinations, MDPV (1.5 mg/kg) or cocaine (15 mg/kg) were administered acutely or repeatedly, and BDNF, D3R and G9a transcription levels as well as pro- and mature BDNF protein levels were determined. Our results demonstrate that repeated administration of MDPV or cocaine sensitizes to cocaine and MDPV locomotor effects. After an acute or a repeated exposure to MDPV, cortical mRNA BDNF levels were increased, while a decrease in mBDNF protein levels in the nucleus accumbens 2 h after repeated exposure was evidenced. Interestingly, such decline was involved in the development of locomotor sensitization, thus the pretreatment with 7,8-dihydroxyflavone (10 mg/kg), a TrkB agonist, blocked the development of sensitization to MDPV but not to cocaine, for which no changes in the BDNF-TrkB signaling pathway were observed at early withdrawal. In conclusion, a bidirectional cross-sensitization between MDPV and cocaine was evidenced. Our findings suggest that decreased BDNF-TrkB signaling has an important role in the behavioral sensitization to MDPV, pointing TrkB modulation as a target to prevent MDPV sensitization Keywords: MDPV, Cocaine, Sensitization, BDNF, 7,8-Dihydroxyflavon

    Effects of MDPV on dopamine transporter regulation in male rats. Comparison with cocaine.

    Get PDF
    RATIONALE: MDPV (3,4-methylenedioxypyrovalerone) is a synthetic cathinone present in bath salts. It is a powerful psychostimulant and blocker of the dopamine transporter (DAT), like cocaine. It is known that acute exposure to psychostimulants induces rapid changes in DAT function. OBJECTIVES: To investigate the effects of MDPV on DAT function comparing with cocaine. METHODS: Binding of [3H]WIN 35428 was performed on PC 12 cells treated with MDPV and washed. Rat striatal synaptosomes were incubated with MDPV or cocaine (1 μM) for 1 h and [3H]dopamine (DA) uptake was performed. Also, different treatments with MDPV or cocaine were performed in Sprague-Dawley rats to assess locomotor activity and ex vivo [3H]DA uptake. RESULTS: MDPV increased surface [3H]WIN 35428 binding on PC 12 cells. In vitro incubation of synaptosomes with MDPV produced significant increases in Vmax and KM for [3H]DA uptake. In synaptosomes from MDPV- (1.5 mg/kg, s.c.) and cocaine- (30 mg/kg, i.p.) treated rats, there was a significantly higher and more persistent increase in [3H]DA uptake in the case of MDPV than cocaine. Repeated doses of MDPV developed tolerance to this DAT upregulation and 24 h after the 5-day treatment with MDPV, [3H]DA uptake was reduced. However, a challenge with the same drugs after withdrawal recovered the DAT upregulation by both drugs and showed an increased response to MDPV vs the first dose. At the same time, animals were sensitized to the stereotypies induced by both psychostimulants. CONCLUSIONS: MDPV induces a rapid and reversible functional upregulation of DAT more powerfully and lasting than cocaine

    Adaptive plasticity in the hippocampus of young mice intermittently exposed to MDMA could be the origin of memory deficits.

    Get PDF
    (±)3,4-Methylenedioxymethamphetamine (MDMA) is a relatively selective dopaminergic neurotoxin in mice. This study was designed to evaluate whether MDMA exposure affects their recognition memory and hippocampal expression of plasticity markers. Mice were administered with increasing doses of MDMA once per week for 8 weeks (three times in 1 day, every 3 h) and killed 2 weeks (2w) or 3 months (3m) later. The treatment did not modify hippocampal tryptophan hydroxylase 2, a serotonergic indicator, but induced an initial reduction in dopaminergic markers in substantia nigra, which remained stable for at least 3 months. In parallel, MDMA produced a decrease in dopamine (DA) levels in the striatum at 2w, which were restored 3 months later, suggesting dopaminergic terminal regeneration (sprouting phenomenon). Moreover, recognition memory was assessed using the object recognition test. Young (2w) and mature (3m) adult mice exhibited impaired memory after 24-h but not after just 1-h retention interval. Two weeks after the treatment, animals showed constant levels of CREB but an increase in its phosphorylated form and in c-Fos expression. Brain-derived neurotrophic factor (BDNF) and especially Arc overexpression was sustained and long-lasting. We cannot rule out the absence of MDMA injury in the hippocampus being due to the generation of BDNF. The levels of NMDAR2B, PSD-95, and synaptophysin were unaffected. In conclusion, the young mice exposed to MDMA showed increased expression of early key markers of plasticity, which sometimes remained for 3 months, and suggests hippocampal maladaptive plasticity that could explain memory deficits evidenced here
    • …
    corecore