25 research outputs found

    Environmental Dependence of Type Ia Supernovae in Low-Redshift Galaxy Clusters

    Full text link
    We present an analysis of 102 type Ia supernovae (SNe Ia) in nearby (z < 0.1), x-ray selected galaxy clusters. This is the largest such sample to date and is based on archival data primarily from ZTF and ATLAS. We divide our SNe Ia into an inner cluster sample projected within r500r_{500} of the cluster center and an outer cluster sample projected between r500r_{500} and 2 r5002\,r_{500}. We compare these to field samples of SNe Ia at similar redshifts in both quiescent and star-forming host galaxies. Based on SALT3 fits to the light curves, we find that the inner cluster SNe Ia have a higher fraction of fast-evolving objects (SALT3 x1<−1x_1 < -1) than the outer cluster or field quiescent samples. This implies an intrinsically different population of SNe Ia occurs in inner cluster environments, beyond known correlations based on host galaxy alone. Our cluster samples show a strongly bimodal x1x_1 distribution with a fast-evolving component that dominates the inner cluster objects (≳\gtrsim 75%) but is just a small fraction of SNe Ia in field star-forming galaxies (≲\lesssim 10%). We do not see strong evidence for variations in the color (SALT3 cc) distributions among the samples and find only minor differences in SN Ia standardization parameters and Hubble residuals. We suggest that the age of the stellar population drives the observed distributions, with the oldest populations nearly exclusively producing fast-evolving SNe Ia.Comment: Submitted to AAS journal

    Over 500 Days in the Life of the Photosphere of the Type Iax Supernova SN 2014dt

    Get PDF
    Type Iax supernovae (SNe Iax) are the largest known class of peculiar white dwarf SNe, distinct from normal Type Ia supernovae (SNe Ia). The unique properties of SNe Iax, especially their strong photospheric lines out to extremely late times, allow us to model their optical spectra and derive the physical parameters of the long-lasting photosphere. We present an extensive spectral timeseries, including 21 new spectra, of SN Iax 2014dt from +11 to +562 days after maximum light. We are able to reproduce the entire timeseries with a self-consistent, nearly unaltered deflagration explosion model from Fink et al. using TARDIS, an open source radiative-transfer code. We find that the photospheric velocity of SN 2014dt slows its evolution between +64 and +148 days, which closely overlaps the phase when we see SN 2014dt diverge from the normal spectral evolution of SNe Ia (+90 to +150 days). The photospheric velocity at these epochs, ~400-1000 km s-1, may demarcate a boundary within the ejecta below which the physics of SNe Iax and normal SNe Ia differ. Our results suggest that SN 2014dt is consistent with a weak deflagration explosion model that leaves behind a bound remnant and drives an optically thick, quasi-steady-state wind creating the photospheric lines at late times. The data also suggest that this wind may weaken at epochs past +450 days, perhaps indicating a radioactive power source that has decayed away

    Ultraviolet Spectroscopy and TARDIS Models of the Broad-lined Type-Ic Supernova 2014ad

    Full text link
    Few published ultraviolet (UV) spectra exist for stripped-envelope supernovae, and none to date for broad-lined Type Ic supernovae (SN Ic-bl). These objects have extremely high ejecta velocities and are the only supernova type directly linked to gamma-ray bursts (GRBs). Here we present two epochs of HST/STIS spectra of the SN Ic-bl 2014ad, the first UV spectra for this class. We supplement this with 26 new epochs of ground-based optical spectra, augmenting a rich spectral time series. The UV spectra do not show strong features, likely due to high opacity, and are consistent with broadened versions of other SN Ic spectra observed in the UV. We measure Fe II 5169 Angstrom velocities and show that SN 2014ad has even higher ejecta velocities than most SNe Ic both with and without observed GRBs. We construct models of the SN 2014ad UV+optical spectra using TARDIS, a 1D Monte-Carlo radiative-transfer spectral synthesis code. The models fit the data well at multiple epochs in the optical but underestimate the flux in the UV. We find that high densities at high velocities are needed to reproduce the spectra, with ∼\sim3 M⊙_\odot of material at v>v > 22,000 km s−1^{-1}, assuming spherical symmetry. Our nebular line fits suggest a steep density profile at low velocities. Together, these results imply a higher total ejecta mass than estimated from previous light curve analysis and expected from theory. This may be reconciled by a flattening of the density profile at low velocity and extra emission near the center of the ejecta.Comment: 25 pages, 14 figures, submitted to AAS Journal

    SN~2012cg: Evidence for Interaction Between a Normal Type Ia Supernova and a Non-Degenerate Binary Companion

    Get PDF
    We report evidence for excess blue light from the Type Ia supernova SN 2012cg at fifteen and sixteen days before maximum B-band brightness. The emission is consistent with predictions for the impact of the supernova on a non-degenerate binary companion. This is the first evidence for emission from a companion to a SN Ia. Sixteen days before maximum light, the B-V color of SN 2012cg is 0.2 mag bluer than for other normal SN~Ia. At later times, this supernova has a typical SN Ia light curve, with extinction-corrected M_B = -19.62 +/- 0.02 mag and Delta m_{15}(B) = 0.86 +/- 0.02. Our data set is extensive, with photometry in 7 filters from 5 independent sources. Early spectra also show the effects of blue light, and high-velocity features are observed at early times. Near maximum, the spectra are normal with a silicon velocity v_{Si} = -10,500$ km s^{-1}. Comparing the early data with models by Kasen (2010) favors a main-sequence companion of about 6 solar masses. It is possible that many other SN Ia have main-sequence companions that have eluded detection because the emission from the impact is fleeting and faint.Comment: accepted to Ap

    Measuring nickel masses in Type Ia supernovae using cobalt emission in nebular phase spectra

    Get PDF
    The light curves of Type Ia supernovae (SNe Ia) are powered by the radioactive decay of 56^{56}Ni to 56^{56}Co at early times, and the decay of 56^{56}Co to 56^{56}Fe from ~60 days after explosion. We examine the evolution of the [Co III] 5892 A emission complex during the nebular phase for SNe Ia with multiple nebular spectra and show that the line flux follows the square of the mass of 56^{56}Co as a function of time. This result indicates both efficient local energy deposition from positrons produced in 56^{56}Co decay, and long-term stability of the ionization state of the nebula. We compile 77 nebular spectra of 25 SN Ia from the literature and present 17 new nebular spectra of 7 SNe Ia, including SN2014J. From these we measure the flux in the [Co III] 5892 A line and remove its well-behaved time dependence to infer the initial mass of 56^{56}Ni (MNiM_{Ni}) produced in the explosion. We then examine 56^{56}Ni yields for different SN Ia ejected masses (MejM_{ej} - calculated using the relation between light curve width and ejected mass) and find the 56^{56}Ni masses of SNe Ia fall into two regimes: for narrow light curves (low stretch s~0.7-0.9), MNiM_{Ni} is clustered near MNiM_{Ni} ~ 0.4M⊙M_\odot and shows a shallow increase as MejM_{ej} increases from ~1-1.4M⊙M_\odot; at high stretch, MejM_{ej} clusters at the Chandrasekhar mass (1.4M⊙M_\odot) while MNiM_{Ni} spans a broad range from 0.6-1.2M⊙M_\odot. This could constitute evidence for two distinct SN Ia explosion mechanisms.Comment: 16 pages, 12 figures (main text), plus data tables in appendix. Spectra released on WISeREP. Submitted to MNRAS, comments welcom

    Over 500 Days in the Life of the Photosphere of the Type Iax Supernova SN 2014dt

    Full text link
    Type Iax supernovae (SN Iax) are the largest known class of peculiar white dwarf supernovae, distinct from normal Type Ia supernovae (SN Ia). The unique properties of SN Iax, especially their strong photospheric lines out to extremely late times, allow us to model their optical spectra and derive physical parameters for the long-lasting photosphere. We present an extensive spectral timeseries, including 21 new spectra, of SN Iax 2014dt from +11 to +562 days after maximum light. We are able to reproduce the entire timeseries with a self-consistent, nearly unaltered deflagration explosion model from Fink et al. (2014) using TARDIS, an open-source radiative transfer code (Kerzendorf & Sim 2014; Kerzendorf et al. 2023). We find that the photospheric velocity of SN 2014dt slows its evolution between +64 and +148 days, which closely overlaps the phase when we see SN 2014dt diverge from the normal spectral evolution of SN Ia (+90 to +150 days). The photospheric velocity at these epochs, ~400−-1000 km s−1^{-1}, may demarcate a boundary within the ejecta below which the physics of SN Iax and normal SN Ia differ. Our results suggest that SN 2014dt is consistent with a weak deflagration explosion model that leaves behind a bound remnant and drives an optically thick, quasi-steady-state wind creating the photospheric lines at late times. The data also suggest that this wind may weaken at epochs past +450 days, perhaps indicating a radioactive power source that has decayed away.Comment: Accepted to ApJ, 22 pages, 8 figures, 3 table

    SN 2012cg: Evidence for Interaction Between a Normal SN Ia and a Non-degenerate Binary Companion

    Get PDF
    We report evidence for excess blue light from the Type Ia supernova (Sn Ia) SN 2012cg at 15 and 16 days before maximum B-band brightness. The emission is consistent with predictions for the impact of the supernova on a non-degenerate binary companion. This is the first evidence for emission from a companion to a normal SN Ia. Sixteen days before maximum light, the color of SN 2012cg is 0.2 mag bluer than for other normal SN Ia. At later times, this supernova has a typical SN Ia light curve, with extinction-corrected mag and . Our data set is extensive, with photometry in seven filters from five independent sources. Early spectra also show the effects of blue light, and high-velocity features are observed at early times. Near maximum, the spectra are normal with a silicon velocity vSi = −10,500 km s−1. Comparing the early data with models by Kasen favors a main-sequence companion of about six solar masses. It is possible that many other SN Ia have main-sequence companions that have eluded detection because the emission from the impact is fleeting and faint

    SN 2019muj-a well-observed Type Iax supernova that bridges the luminosity gap of the class

    Get PDF
    We present early-time (t < +50 d) observations of SN 2019muj (=ASASSN-19tr), one of the best-observed members of the peculiar SN Iax class. Ultraviolet and optical photometric and optical and near-infrared spectroscopic follow-up started from similar to 5 d before maximum light [t(max)(B) on 58707.8 MJD] and covers the photospheric phase. The early observations allow us to estimate the physical properties of the ejecta and characterize the possible divergence from a uniform chemical abundance structure. The estimated bolometric light-curve peaks at 1.05 x 10(42) erg s(-1) and indicates that only 0.031 M-circle dot of Ni-56 was produced, making SN 2019muj a moderate luminosity object in the Iax class with peak absolute magnitude of M-V = -16.4 mag. The estimated date of explosion is t(0) = 58698.2 MJD and implies a short rise time of t(rise) = 9.6 d in B band. We fit of the spectroscopic data by synthetic spectra, calculated via the radiative transfer code TARDIS. Adopting the partially stratified abundance template based on brighter SNe Iax provides a good match with SN 2019muj. However, without earlier spectra, the need for stratification cannot be stated in most of the elements, except carbon, which is allowed to appear in the outer layers only. SN 2019muj provides a unique opportunity to link extremely low-luminosity SNe Iax to well-studied, brighter SNe Iax
    corecore