9 research outputs found

    Artificial thymic organoids represent a reliable tool to study T-cell differentiation in patients with severe T-cell lymphopenia

    Full text link
    The study of early T-cell development in humans is challenging because of limited availability of thymic samples and the limitations of in vitro T-cell differentiation assays. We used an artificial thymic organoid (ATO) platform generated by aggregating a DLL4-expressing stromal cell line (MS5-hDLL4) with CD34+ cells isolated from bone marrow or mobilized peripheral blood to study T-cell development from CD34+ cells of patients carrying hematopoietic intrinsic or thymic defects that cause T-cell lymphopenia. We found that AK2 deficiency is associated with decreased cell viability and an early block in T-cell development. We observed a similar defect in a patient carrying a null IL2RG mutation. In contrast, CD34+ cells from a patient carrying a missense IL2RG mutation reached full T-cell maturation, although cell numbers were significantly lower than in controls. CD34+ cells from patients carrying RAG mutations were able to differentiate to CD4+CD8+ cells, but not to CD3+TCRαβ+ cells. Finally, normal T-cell differentiation was observed in a patient with complete DiGeorge syndrome, consistent with the extra-hematopoietic nature of the defect. The ATO system may help determine whether T-cell deficiency reflects hematopoietic or thymic intrinsic abnormalities and define the exact stage at which T-cell differentiation is blocked

    Human inborn errors of immunity caused by defects of receptor and proteins of cellular membrane

    No full text
    Inborn errors of immunity are diseases of the immune system resulting from germline mutations that alter the expression of encoded proteins or molecules. Total updated number of these distinct disorders is currently 406, with 430 different identified gene defects involved. Studies of the underlying mechanisms have contributed in better understanding the pathophysiology of the diseases, but also the complexity of the biology of the innate and adaptive immune system and its interaction with microbes. In this review we present and 24 briefly discuss Inborn Errors of Immunity caused by defects in genes encoding for receptors and protein of cellular membrane, including cytokine receptors, T cell antigen receptor (TCR) complex, cellular surface receptors or receptors signaling causing predominantly antibody deficiencies, co-stimulatory receptors and other surface molecules. These alterations impact many different biological processes of immune-system cells, including development, proliferation, activation and down-regulation of the immunological response, and result in a variety of different diseases that can present with distinct clinical features but also with overlapping signs and symptoms

    Defining a new immune deficiency syndrome: MAN2B2-CDG

    No full text
    Congenital disorders of glycosylation (CDGs) are a group of clinically heterogeneous disorders characterized by abnormal monosaccharide activation and protein and lipid glycosylation. More than 147 CDG subtypes have currently been described to affect several glycosylation pathways, including N-glycosylation, O-glycosylation, glycosaminoglycan, dystroglycanopathy, and glycosylphosphatidylinositol (GPI)-anchor pathways. ... Here, we present the functional and metabolic studies on a patient with combined immune deficiency harboring biallelic mutations in the mannosidase alpha class 2B member 2 (MAN2B2) gene, affecting both N-glycan synthesis and glycan degradation ..

    Natural Killer Cells from Patients with Recombinase-Activating Gene and Non-Homologous End Joining Gene Defects Comprise a Higher Frequency of CD56(bright) NKG2A(+++) Cells, and Yet Display Increased Degranulation and Higher Perforin Content

    No full text
    Mutations of the recombinase-activating genes 1 and 2 (RAG1 and RAG2) in humans are associated with a broad range of phenotypes. For patients with severe clinical presentation, hematopoietic stem cell transplantation (HSCT) represents the only curative treatment; however, high rates of graft failure and incomplete immune reconstitution have been observed, especially after unconditioned haploidentical transplantation. Studies in mice have shown that Rag(-/-) natural killer (NK) cells have a mature phenotype, reduced fitness, and increased cytotoxicity. We aimed to analyze NK cell phenotype and function in patients with mutations in RAG and in non-homologous end joining (NHEJ) genes. Here, we provide evidence that NK cells from these patients have an immature phenotype, with significant expansion of CD56(bright) CD16(-/int) CD57(-) cells, yet increased degranulation and high perforin content. Correlation was observed between in vitro recombinase activity of the mutant proteins, NK cell abnormalities, and in vivo clinical phenotype. Addition of serotherapy in the conditioning regimen, with the aim of depleting the autologous NK cell compartment, may be important to facilitate engraftment and immune reconstitution in patients with RAG and NHEJ defects treated by HSCT.status: publishe

    Natural Killer Cells from Patients with Recombinase-Activating Gene and Non-Homologous End Joining Gene Defects Comprise a Higher Frequency of CD56(bright) NKG2A(+++) Cells, and Yet Display Increased Degranulation and Higher Perforin Content

    Get PDF
    Mutations of the recombinase-activating genes 1 and 2 (RAG1 and RAG2) in humans are associated with a broad range of phenotypes. For patients with severe clinical presentation, hematopoietic stem cell transplantation (HSCT) represents the only curative treatment; however, high rates of graft failure and incomplete immune reconstitution have been observed, especially after unconditioned haploidentical transplantation. Studies in mice have shown that Rag(-/-) natural killer (NK) cells have a mature phenotype, reduced fitness, and increased cytotoxicity. We aimed to analyze NK cell phenotype and function in patients with mutations in RAG and in non-homologous end joining (NHEJ) genes. Here, we provide evidence that NK cells from these patients have an immature phenotype, with significant expansion of CD56(bright) CD16(-/int) CD57(-) cells, yet increased degranulation and high perforin content. Correlation was observed between in vitro recombinase activity of the mutant proteins, NK cell abnormalities, and in vivo clinical phenotype. Addition of serotherapy in the conditioning regimen, with the aim of depleting the autologous NK cell compartment, may be important to facilitate engraftment and immune reconstitution in patients with RAG and NHEJ defects treated by HSC
    corecore