96 research outputs found

    Vasopressin in vasodilatory shock: hemodynamic stabilization at the cost of the liver and the kidney?

    Get PDF
    Infusing arginine vasopressin (AVP) in advanced vasodilatory shock is usually accompanied by a decrease in cardiac index and systemic oxygen transport. Whether or not such a vasoconstriction impedes regional blood flow and thus visceral organ function, even when low AVP is used, is still a matter of debate. Krejci and colleagues now report, in this issue of Critical Care, that infusing 'low-dose' AVP during early, short-term, normotensive and normodynamic fecal peritonitis-induced porcine septicemia markedly reduced both renal and portal blood flow, and consequently total hepatic blood flow, whereas hepatic arterial flow was not affected. This macrocirculatory response was concomitant with reduced kidney microcirculatory perfusion, whereas liver micro-circulation remained unchanged. From these findings the authors conclude that the use of AVP to treat hypotension should be cautioned against in patients with septic shock. Undoubtedly, given its powerful vasoconstrictor properties, which are not accompanied by positive inotropic qualities (in contrast with most of the equally potent standard care 'competitors', namely catecholamines), the safety of AVP is still a matter of concern. Nevertheless, the findings reported by Krejci and colleagues need to be discussed in the context of the model design, the timing and dosing of AVP as well as the complex interaction between visceral organ perfusion and function

    Sepsis therapy: what's the best for the mitochondria?

    Get PDF
    It is suspected that mitochondrial dysfunction is a major cause of organ failure in sepsis and septic shock. A study presented in this issue of Critical Care revealed that liver mitochondria from pigs treated with norepinephrine during endotoxaemia exhibit greater in vitro respiratory activity. The investigators provide an elegant demonstration of how therapeutic interventions in sepsis may profoundly influence mitochondrial respiration, but many aspects of mitochondrial function in sepsis remain to be clarified

    Bench-to-bedside review: Hydrogen sulfide – the third gaseous transmitter: applications for critical care

    Get PDF
    Hydrogen sulfide (H2S), a gas with the characteristic odor of rotten eggs, is known for its toxicity and as an environmental hazard, inhibition of mitochondrial respiration resulting from blockade of cytochrome c oxidase being the main toxic mechanism. Recently, however, H2S has been recognized as a signaling molecule of the cardiovascular, inflammatory and nervous systems, and therefore, alongside nitric oxide and carbon monoxide, is referred to as the third endogenous gaseous transmitter. Inhalation of gaseous H2S as well as administration of inhibitors of its endogenous production and compounds that donate H2S have been studied in various models of shock. Based on the concept that multiorgan failure secondary to shock, inflammation and sepsis may represent an adaptive hypometabolic reponse to preserve ATP homoeostasis, particular interest has focused on the induction of a hibernation-like suspended animation with H2S. It must be underscored that currently only a limited number of data are available from clinically relevant large animal models. Moreover, several crucial issues warrant further investigation before the clinical application of this concept. First, the impact of hypothermia for any H2S-related organ protection remains a matter of debate. Second, similar to the friend and foe character of nitric oxide, no definitive conclusions can be made as to whether H2S exerts proinflammatory or anti-inflammatory properties. Finally, in addition to the question of dosing and timing (for example, bolus administration versus continuous intravenous infusion), the preferred route of H2S administration remains to be settled – that is, inhaling gaseous H2S versus intra-venous administration of injectable H2S preparations or H2S donors. To date, therefore, while H2S-induced suspended animation in humans may still be referred to as science fiction, there is ample promising preclinical data that this approach is a fascinating new therapeutic perspective for the management of shock states that merits further investigation

    Year in review 2007: Critical Care – shock

    Get PDF
    The research papers on shock published in Critical Care throughout 2007 are related to three major subjects: the modulation of the macrocirculation and microcirculation during shock, focusing on arginine vasopressin, erythropoietin and nitric oxide; studies on metabolic homeostasis (acid–base status, energy expenditure and gastrointestinal motility); and basic supportive measures in critical illness (fluid resuscitation and sedation, and body-temperature management). The present review summarizes the key results of these studies and provides a brief discussion in the context of the relevant scientific and clinical background

    Of mice and men (and sheep, swine etc.): The intriguing hemodynamic and metabolic effects of hydrogen sulfide (H2S)

    Get PDF
    Whether the hydrogen sulfide (H2S)-induced metabolic depression observed in awake rodents exists in larger species is controversial. Therefore, Derwall and colleagues exposed anesthetized and ventilated sheep to incremental H2S concentrations by means of an extracorporeal membrane oxygenator. H2S caused pulmonary vasoconstriction and metabolic acidosis at the highest concentration studied. Oxygen uptake and carbon dioxide production remained in the physiological range. The authors concluded that, beyond the effect of temperature, H2S hardly modifies metabolism at all. Since the highest H2S concentration caused toxic side effects (possibly due to an inhibition of mitochondrial respiration), the therapeutic use of inhaled H2S should be cautioned

    Vasopressin in vasodilatory shock: is the heart in danger?

    Get PDF
    In patients with hyperdynamic hemodynamics, infusing arginine vasopressin (AVP) in advanced vasodilatory shock is usually accompanied by a decrease in cardiac output and in visceral organ blood flow. Depending on the infusion rate, this vasoconstriction also reduces coronary blood flow despite an increased coronary perfusion pressure. In a porcine model of transitory myocardial ischemia-induced left ventricular dysfunction, Müller and colleagues now report that the AVP-related coronary vaso-constriction may impede diastolic relaxation while systolic contraction remains unaffected. Although any AVP-induced myocardial ischemia undoubtedly is a crucial safety issue, these findings need to be discussed in the context of the model design, the dosing of AVP as well as the complex direct, afterload-independent and systemic, vasoconstriction-related effects on the heart

    Gaseous Mediators and Mitochondrial Function: The Future of Pharmacologically Induced Suspended Animation?

    Get PDF
    The role of nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) as poisonous gases is well-established. However, they are not only endogenously produced but also, at low concentrations, exert beneficial effects, such as anti-inflammation, and cytoprotection. This knowledge initiated the ongoing debate, as to whether these molecules, also referred to as “gaseous mediators” or “gasotransmitters,” could serve as novel therapeutic agents. In this context, it is noteworthy, that all gasotransmitters specifically target the mitochondria, and that this interaction may modulate mitochondrial bioenergetics, thereby subsequently affecting metabolic function. This feature is of crucial interest for the possible induction of “suspended animation.” Suspended animation, similar to mammalian hibernation (and/or estivation), refers to an externally induced hypometabolic state, with the intention to preserve organ function in order to survive otherwise life-threatening conditions. This hypometabolic state is usually linked to therapeutic hypothermia, which, however, comes along with adverse effects (e.g., coagulopathy, impaired host defense). Therefore, inducing an on-demand hypometabolic state by directly lowering the energy metabolism would be an attractive alternative. Theoretically, gasotransmitters should reversibly interact and inhibit the mitochondrial respiratory chain during pharmacologically induced suspended animation. However, it has to be kept in mind that this effect also bears the risk of cytotoxicity resulting from the blockade of the mitochondrial respiratory chain. Therefore, this review summarizes the current knowledge of the impact of gasotransmitters on modulating mitochondrial function. Further, we will discuss their role as potential candidates in inducing a suspended animation

    Modulation of the rod outer segment aerobic metabolism diminishes the production of radicals due to light absorption

    Get PDF
    Oxidative stress is a primary risk factor for both inflammatory and degenerative retinopathies. Our previous data on blue light-irradiated retinas demonstrated an oxidative stress higher in the rod outer segment (OS) than in the inner limb, leading to impairment of the rod OS extra-mitochondrial aerobic metabolism. Here the oxidative metabolism and Reactive Oxygen Intermediates (ROI) production was evaluated in purified bovine rod OS in function of exposure to different illumination conditions. A dose response was observed to varying light intensities and duration in terms of both ROI production and ATP synthesis. Pretreatment with resveratrol, inhibitor of F1Fo-ATP synthase, or metformin, inhibitor of the respiratory complex I, significantly diminished the ROI production. Metformin also diminished the rod OS Complex I activity and reduced the maximal OS response to light in ATP production. Data show for the first time the relationship existing in the rod OS between its -aerobic- metabolism, light absorption, and ROI production. A beneficial effect was exerted by metformin and resveratrol, in modulating the ROI production in the illuminated rod OS, suggestive of their beneficial action also in vivo. Data shed new light on preventative interventions for cone loss secondary to rod damage due to oxidative stress

    Comparison of cardiac, hepatic, and renal effects of arginine vasopressin and noradrenaline during porcine fecal peritonitis: a randomized controlled trial

    Get PDF
    INTRODUCTION: Infusing arginine vasopressin (AVP) in vasodilatory shock usually decreases cardiac output and thus systemic oxygen transport. It is still a matter of debate whether this vasoconstriction impedes visceral organ blood flow and thereby causes organ dysfunction and injury. Therefore, we tested the hypothesis whether low-dose AVP is safe with respect to liver, kidney, and heart function and organ injury during resuscitated septic shock. METHODS: After intraperitoneal inoculation of autologous feces, 24 anesthetized, mechanically ventilated, and instrumented pigs were randomly assigned to noradrenaline alone (increments of 0.05 microg/kg/min until maximal heart rate of 160 beats/min; n = 12) or AVP (1 to 5 ng/kg/min; supplemented by noradrenaline if the maximal AVP dosage failed to maintain mean blood pressure; n = 12) to treat sepsis-associated hypotension. Parameters of systemic and regional hemodynamics (ultrasound flow probes on the portal vein and hepatic artery), oxygen transport, metabolism (endogenous glucose production and whole body glucose oxidation derived from blood glucose isotope and expiratory 13CO2/12CO2 enrichment during 1,2,3,4,5,6-13C6-glucose infusion), visceral organ function (blood transaminase activities, bilirubin and creatinine concentrations, creatinine clearance, fractional Na+ excretion), nitric oxide (exhaled NO and blood nitrate + nitrite levels) and cytokine production (interleukin-6 and tumor necrosis factor-alpha blood levels), and myocardial function (left ventricular dp/dtmax and dp/dtmin) and injury (troponin I blood levels) were measured before and 12, 18, and 24 hours after peritonitis induction. Immediate post mortem liver and kidney biopsies were analysed for histomorphology (hematoxylin eosin staining) and apoptosis (TUNEL staining). RESULTS: AVP decreased heart rate and cardiac output without otherwise affecting heart function and significantly decreased troponin I blood levels. AVP increased the rate of direct, aerobic glucose oxidation and reduced hyperlactatemia, which coincided with less severe kidney dysfunction and liver injury, attenuated systemic inflammation, and decreased kidney tubular apoptosis. CONCLUSIONS: During well-resuscitated septic shock low-dose AVP appears to be safe with respect to myocardial function and heart injury and reduces kidney and liver damage. It remains to be elucidated whether this is due to the treatment per se and/or to the decreased exogenous catecholamine requirements
    corecore