111 research outputs found

    Mode decomposition and renormalization in semiclassical gravity

    Get PDF
    We compute the influence action for a system perturbatively coupled to a linear scalar field acting as the environment. Subtleties related to divergences that appear when summing over all the modes are made explicit and clarified. Being closely connected with models used in the literature, we show how to completely reconcile the results obtained in the context of stochastic semiclassical gravity when using mode decomposition with those obtained by other standard functional techniques.Comment: 4 pages, RevTeX, no figure

    Semiclassical Effects and the Onset of Inflation

    Full text link
    We present a class of exact solutions to the constraint equations of General Relativity coupled to a Klein - Gordon field, these solutions being isotropic but not homogeneous. We analyze the subsequent evolution of the consistent Cauchy data represented by those solutions, showing that only certain special initial conditions eventually lead to successfull Inflationary cosmologies. We argue, however, that these initial conditions are precisely the likely outcomes of quantum events occurred before the inflationary era.Comment: 22 pages, file written in RevTe

    Fluctuations of the vacuum energy density of quantum fields in curved spacetime via generalized zeta functions

    Get PDF
    For quantum fields on a curved spacetime with an Euclidean section, we derive a general expression for the stress energy tensor two-point function in terms of the effective action. The renormalized two-point function is given in terms of the second variation of the Mellin transform of the trace of the heat kernel for the quantum fields. For systems for which a spectral decomposition of the wave opearator is possible, we give an exact expression for this two-point function. Explicit examples of the variance to the mean ratio Δ=(2)/(2)\Delta' = (-^2)/(^2) of the vacuum energy density ρ\rho of a massless scalar field are computed for the spatial topologies of Rd×S1R^d\times S^1 and S3S^3, with results of Δ(Rd×S1)=(d+1)(d+2)/2\Delta'(R^d\times S^1) =(d+1)(d+2)/2, and Δ(S3)=111\Delta'(S^3) = 111 respectively. The large variance signifies the importance of quantum fluctuations and has important implications for the validity of semiclassical gravity theories at sub-Planckian scales. The method presented here can facilitate the calculation of stress-energy fluctuations for quantum fields useful for the analysis of fluctuation effects and critical phenomena in problems ranging from atom optics and mesoscopic physics to early universe and black hole physics.Comment: Uses revte

    Noise and Fluctuations in Semiclassical Gravity

    Full text link
    We continue our earlier investigation of the backreaction problem in semiclassical gravity with the Schwinger-Keldysh or closed-time-path (CTP) functional formalism using the language of the decoherent history formulation of quantum mechanics. Making use of its intimate relation with the Feynman-Vernon influence functional (IF) method, we examine the statistical mechanical meaning and show the interrelation of the many quantum processes involved in the backreaction problem, such as particle creation, decoherence and dissipation. We show how noise and fluctuation arise naturally from the CTP formalism. We derive an expression for the CTP effective action in terms of the Bogolubov coefficients and show how noise is related to the fluctuations in the number of particles created. In so doing we have extended the old framework of semiclassical gravity, based on the mean field theory of Einstein equation with a source given by the expectation value of the energy-momentum tensor, to that based on a Langevin-type equation, where the dynamics of fluctuations of spacetime is driven by the quantum fluctuations of the matter field. This generalized framework is useful for the investigation of quantum processes in the early universe involving fluctuations, vacuum stability and phase transtion phenomena and the non-equilibrium thermodynamics of black holes. It is also essential to an understanding of the transition from any quantum theory of gravity to classical general relativity. \pacs{pacs numbers: 04.60.+n,98.80.Cq,05.40.+j,03.65.Sq}Comment: Latex 37 pages, umdpp 93-216 (submitted to Phys. Rev. D, 24 Nov. 1993

    Stochastic Behavior of Effective Field Theories Across Threshold

    Full text link
    We explore how the existence of a field with a heavy mass influences the low energy dynamics of a quantum field with a light mass by expounding the stochastic characters of their interactions which take on the form of fluctuations in the number of (heavy field) particles created at the threshold, and dissipation in the dynamics of the light fields, arising from the backreaction of produced heavy particles. We claim that the stochastic nature of effective field theories is intrinsic, in that dissipation and fluctuations are present both above and below the threshold. Stochasticity builds up exponentially quickly as the heavy threshold is approached from below, becoming dominant once the threshold is crossed. But it also exists below the threshold and is in principle detectable, albeit strongly suppressed at low energies. The results derived here can be used to give a quantitative definition of the `effectiveness' of a theory in terms of the relative weight of the deterministic versus the stochastic behavior at different energy scales.Comment: 32 pages, Latex, no figure

    Stochastic semiclassical cosmological models

    Get PDF
    We consider the classical stochastic fluctuations of spacetime geometry induced by quantum fluctuations of massless non-conformal matter fields in the Early Universe. To this end, we supplement the stress-energy tensor of these fields with a stochastic part, which is computed along the lines of the Feynman-Vernon and Schwinger-Keldysh techniques; the Einstein equation is therefore upgraded to a so called Einstein-Langevin equation. We consider in some detail the conformal fluctuations of flat spacetime and the fluctuations of the scale factor in a simple cosmological modelintroduced by Hartle, which consists of a spatially flat isotropic cosmology driven by radiation and dust.Comment: 29 pages, no figures, ReVTeX fil

    Macroscopic Quantum Phenomena from the Correlation, Coupling and Criticality Perspectives

    Full text link
    In this sequel paper we explore how macroscopic quantum phenomena can be measured or understood from the behavior of quantum correlations which exist in a quantum system of many particles or components and how the interaction strengths change with energy or scale, under ordinary situations and when the system is near its critical point. We use the nPI (master) effective action related to the Boltzmann-BBGKY / Schwinger-Dyson hierarchy of equations as a tool for systemizing the contributions of higher order correlation functions to the dynamics of lower order correlation functions. Together with the large N expansion discussed in our first paper(MQP1) we explore 1) the conditions whereby an H-theorem is obtained, which can be viewed as a signifier of the emergence of macroscopic behavior in the system. We give two more examples from past work: 2) the nonequilibrium dynamics of N atoms in an optical lattice under the large N\cal N (field components), 2PI and second order perturbative expansions, illustrating how N and N\cal N enter in these three aspects of quantum correlations, coherence and coupling strength. 3) the behavior of an interacting quantum system near its critical point, the effects of quantum and thermal fluctuations and the conditions under which the system manifests infrared dimensional reduction. We also discuss how the effective field theory concept bears on macroscopic quantum phenomena: the running of the coupling parameters with energy or scale imparts a dynamical-dependent and an interaction-sensitive definition of `macroscopia'.Comment: For IARD 2010 meeting, Hualien, Taiwan. Proceedings to appear in J. Physics (Conf. Series

    O(N) Quantum fields in curved spacetime

    Full text link
    For the O(N) field theory with lambda Phi^4 self-coupling, we construct the two-particle-irreducible (2PI), closed-time-path (CTP) effective action in a general curved spacetime. From this we derive a set of coupled equations for the mean field and the variance. They are useful for studying the nonperturbative, nonequilibrium dynamics of a quantum field when full back reactions of the quantum field on the curved spacetime, as well as the fluctuations on the mean field, are required. Applications to phase transitions in the early Universe such as the Planck scale or in the reheating phase of chaotic inflation are under investigation.Comment: 31 pages, 2 figures, uses RevTeX 3.1, LaTeX 2e, AMSfonts 2.2, graphics 0.6; To appear in Phys. Rev. D (7/15/97
    corecore