56 research outputs found

    Digestión in vitro de grasas en pacientes sometidos a terapia de sustitución enzimática: puesta a punto del método y ensayos de digestión de leche

    Full text link
    [ES] El óptimo ajuste de la Terapia de Sustitución Enzimática en pacientes con insuficiencia pancreática sigue siendo un desafío. Actualmente no existen estudios que permitan adaptar las dosis de suplemento enzimático en función del tipo de alimento ingerido, y por ende no es posible establecer recomendaciones basadas en la evidencia que aseguren la efectividad del tratamiento. Como consecuencia, son habituales en estos pacientes los problemas de maldigestión, malabsorción y de estancamiento de peso. A través de este trabajo se ha puesto a punto un protocolo para simular la digestión in vitro de matrices alimentarias en individuos sometidos a Terapia de Sustitución Enzimática. Asimismo se ha analizado el efecto de la relación enzima/sustrato utilizada y del pH en la etapa intestinal como factores determinantes en el proceso de digestión de la grasa en leche. Se ha observado que la cinética de reacción se divide en tres etapas: adsorción de las enzimas a la superficie del sustrato, período de plena actividad enzimática o de velocidad de hidrólisis lineal y etapa de velocidad decreciente y se han estimado y modelizado los parámetros característicos que describen cada una de estas etapas. El pH del medio resultó el principal determinante tanto en la cinética como en la extensión de la reacción. Asimismo, es la relación enzima/sustrato y no solo la concentración de enzima, otro de las variables clave para modular y optimizar la digestibilidad de las grasas en pacientes sometidos a Terapia de Sustitución Enzimática.[EN] The optimal adjustment of the Enzyme Replacement Therapy in patients suffering from pancreatic insufficiency remains a challenge. Currently there are no studies allowing for the adjustment of the enzymatic supplements dosage to the ingested food characteristics, and thus, it is not possible to establish evidence based recommendations that ensure the effectiveness of the treatment. Consequently, maldigestion, malabsorbption and weight gain problems are common among these patients. Along the present study, a protocol has been set up for the simulation of food matrices in vitro digestions in individuals undergoing the enzyme replacement therapy. Additionally it has been analysed the effect of both different enzyme/substrate ratios and pH in the intestinal stage as determinant factors in the lipids of milk digestion process. It has been observed that kinetics of the reaction is divided into three phases, these being: adsorption of the enzymes to the surface of the substrate, period of full activity of the enzymes or lineal rate hydrolysis period, and decreasing rate phase; also it has been estimated and modeled the characterising parameters that describe each of the three phases. The pH value in the medium resulted the main determinant both in the kinetics and in the extension of the reaction. As well, it is the enzyme/substrate ratio, and not just the enzyme concentration, another key variable for the modulating and optimisation of the fats digestibility in patients following the Enzyme Replacement Therapy.[CA] L’òptim ajust de la Teràpia de Substitució Enzimàtica en pacients amb insuficiència pancreàtica continua sent un repte. Actualment no existeixen estudis que permeten adaptar la dosi de suplement enzimàtic en funció del tipus d’aliment ingerit, i per tant no és possible establir recomanacions basades en l’evidencia que asseguren l’efectivitat del tractament. Com a conseqüència d’açò, són habituals en estos pacients els problemes de maldigestió, malabsorció i estancament de pes. A través d’este treball s’ha posat a punt un protocol per tal de simular la digestió in vitro de matrius alimentàries en individus sotmesos a teràpia de substitució enzimàtica. Així mateix, s’ha analitzat l’efecte de la relació enzim/substrat utilitzada i del pH en l’etapa intestinal com factors determinants en el procés de digestió del greix de la llet. S’ha observat que la cinètica de reacció es divideix en tres trams: adsorció d’enzims a la superfície del substrat, període de plena activitat enzimàtica o de velocitat d’hidròlisi lineal i tram de velocitat decreixent; a més s’han estimat i modelitzat els paràmetres característics que descriuen cadascuna d’aquestes etapes. El pH del medi va resultar ser el principal determinant tant en la cinètica com en l’extensió de la reacció. Així mateix, és la relació enzim/substrat i no solament la concentració d’enzim una altra de les variables clau per modular i optimitzar la digestibilitat dels greixos en pacients sotmesos a Teràpia de Substitució Enzimàtica.Calvo Lerma, J. (2014). Digestión in vitro de grasas en pacientes sometidos a terapia de sustitución enzimática: puesta a punto del método y ensayos de digestión de leche. http://hdl.handle.net/10251/57011.Archivo delegad

    Lessons learnt from MyCyFAPP Project: Effect of cystic fibrosis factors and inherent-to-food properties on lipid digestion in foods

    Full text link
    [EN] Unveiling mechanisms underpinning nutrient digestion has raised interest in the field of medical sciences for their potential application in clinical treatments. In the case of Cystic Fibrosis (CF), there exists an urgent need for understanding food lipid digestion to establish a criterion to adjust the dose of pancreatic enzyme supplements; patients have to take the supplements to allow digestion, given the associated exocrine pancreatic insufficiency (EPI). The aim of MyCyFAPP Project was to establish an evidence-based method to adjust pancreatic enzyme replacement therapy. To solve this challenge, the still unexplored field of real foods digestion had to be addressed. This review paper provides a description of the static in vitro digestion model that simulated different EPI intestinal conditions to conduct an extensive experimental work with 52 foods. Then, a summary of the data modelling that allowed for establishing a dosing criterion for enzyme supplements is provided. Following, by means of examples, an overview of the main findings related to the new knowledge generated in the field of lipid digestion in real foods is discussed, including the role of the inherent-to-food and the host factors affecting lipolysis. Finally, a discussion about the translation of the generated results in the lab to the clinical treatment of CF concludes with the lessons learnt from conducting this studyAuthors acknowledge the work and effort of the colleagues integrating MyCyFAPP Consortium for bringing knowledge and wisdom to this project. Especially, to those researchers significantly contributing to the field of in vitro digestion studies: Carolina Paz-Yepez, Victoria Fornes-Ferrer, Virginia Larrea, Irene Peinado, and Carmen Ribes-Koninckx. We acknowledge the Horizon 2020 Research and Innovation Framework Programme of the European Union for funding this project.Calvo-Lerma, J.; Asensio-Grau, A.; Heredia Gutiérrez, AB.; Andrés Grau, AM. (2020). Lessons learnt from MyCyFAPP Project: Effect of cystic fibrosis factors and inherent-to-food properties on lipid digestion in foods. Food Research International. 133:1-10. https://doi.org/10.1016/j.foodres.2020.109198S11013

    In vitro digestion of salmon: Influence of processing and intestinal conditions on macronutrients digestibility

    Full text link
    [EN] Salmon is the main dietary source of omega-3 lipids and contains high-biological value protein. However, processing techniques could affect macronutrient digestibility. Also, altered intestinal conditions, particularly given in pancreatic insufficiency, could threaten digestibility. This study tested both hypotheses by subjecting raw, marinated and microwave-cooked salmon to static in vitro digestion under healthy (pH 7, bile concentration 10 mM) and altered (pH 6, bile 1 or 10 mM) intestinal conditions with different pancreatin concentrations. In the standard conditions, proteolysis was not affected by processing, but lipolysis decreased in marinated (46%) and raw salmon (57%) compared to the cooked matrix (67%). In altered conditions, proteolysis and lipolysis decreased to different extents depending on the treatment. Overall, processing affected proteolysis the most (f-ratio = 5.86), while intestinal conditions were the major determinants of lipolysis (f-ratio = 58.01). This study could set the ground to establish dietary recommendations of salmon for specific population groups.The authors would like to thank the Conselleria de Educacio i Investigacio de la Generalitat Valenciana and also the European Union ("El Fondo Social Europeo (FSE) invierte en tu futuro") for the PhD scholarship given to Andrea Asensio Grau (ACIF/2017/008). This study was developed thanks to the equipment funded with the support from the Generalitat Valenciana IDIFEDER/2018/041 (PO FEDER Comunitat Valenciana 2014-2020).Asensio-Grau, A.; Calvo-Lerma, J.; Heredia Gutiérrez, AB.; Andrés Grau, AM. (2021). In vitro digestion of salmon: Influence of processing and intestinal conditions on macronutrients digestibility. Food Chemistry. 342:1-9. https://doi.org/10.1016/j.foodchem.2020.128387S19342Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2018). Effect of cooking methods and intestinal conditions on lipolysis, proteolysis and xanthophylls bioaccessibility of eggs. Journal of Functional Foods, 46, 579-586. doi:10.1016/j.jff.2018.05.025Asensio-Grau, A., Calvo-Lerma, J., Heredia, A., & Andrés, A. (2018). Fat digestibility in meat products: influence of food structure and gastrointestinal conditions. International Journal of Food Sciences and Nutrition, 70(5), 530-539. doi:10.1080/09637486.2018.1542665Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2019). In vitro study of cheese digestion: Effect of type of cheese and intestinal conditions on macronutrients digestibility. LWT, 113, 108278. doi:10.1016/j.lwt.2019.108278Bax, M. L., Aubry, L., Ferreira, C., Daudin, J. D., Gatellier, P., Rémond, D., & Santé-Lhoutellier, V. (2012). Cooking temperature is a key determinant of in vitro meat protein digestion rate: Investigation of underlying mechanisms. Journal of Agricultural and Food Chemistry, 60, 2569–2576.Calder, P. C. (2006). n−3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. The American Journal of Clinical Nutrition, 83(6), 1505S-1519S. doi:10.1093/ajcn/83.6.1505sCalvo-Lerma, J., Fornés-Ferrer, V., Heredia, A., & Andrés, A. (2018). In Vitro Digestion of Lipids in Real Foods: Influence of Lipid Organization Within the Food Matrix and Interactions with Nonlipid Components. Journal of Food Science, 83(10), 2629-2637. doi:10.1111/1750-3841.14343Carrière, F., Rogalska, E., Cudrey, C., Ferrato, F., Laugier, R., & Verger, R. (1997). In vivo and in vitro studies on the stereoselective hydrolysis of tri- and diglycerides by gastric and pancreatic lipases. Bioorganic & Medicinal Chemistry, 5(2), 429-435. doi:10.1016/s0968-0896(96)00251-9Carrière, F., Grandval, P., Renou, C., Palomba, A., Priéri, F., Giallo, J., … Laugier, R. (2005). Quantitative study of digestive enzyme secretion and gastrointestinal lipolysis in chronic pancreatitis. Clinical Gastroenterology and Hepatology, 3(1), 28-38. doi:10.1016/s1542-3565(04)00601-9COHEN, J., BELLINGER, D., CONNOR, W., KRISETHERTON, P., LAWRENCE, R., SAVITZ, D., … GRAY, G. (2005). A Quantitative Risk–Benefit Analysis of Changes in Population Fish Consumption. American Journal of Preventive Medicine, 29(4), 325-325. doi:10.1016/j.amepre.2005.07.003Domínguez–Muñoz, J. E. (2011). Chronic Pancreatitis and Persistent Steatorrhea: What Is the Correct Dose of Enzymes? Clinical Gastroenterology and Hepatology, 9(7), 541-546. doi:10.1016/j.cgh.2011.02.027Estévez, M., Ventanas, S., & Cava, R. (2005). Protein Oxidation in Frankfurters with Increasing Levels of Added Rosemary Essential Oil: Effect on Color and Texture Deterioration. Journal of Food Science, 70(7), c427-c432. doi:10.1111/j.1365-2621.2005.tb11464.xFarmer, L. J., McConnell, J. M., & Kilpatrick, D. J. (2000). Sensory characteristics of farmed and wild Atlantic salmon. Aquaculture, 187(1-2), 105-125. doi:10.1016/s0044-8486(99)00393-2Gass, J., Vora, H., Hofmann, A. F., Gray, G. M., & Khosla, C. (2007). Enhancement of Dietary Protein Digestion by Conjugated Bile Acids. Gastroenterology, 133(1), 16-23. doi:10.1053/j.gastro.2007.04.008Gelfond, D., Ma, C., Semler, J., & Borowitz, D. (2012). Intestinal pH and Gastrointestinal Transit Profiles in Cystic Fibrosis Patients Measured by Wireless Motility Capsule. Digestive Diseases and Sciences, 58(8), 2275-2281. doi:10.1007/s10620-012-2209-1GLADYSHEV, M., SUSHCHIK, N., GUBANENKO, G., DEMIRCHIEVA, S., & KALACHOVA, G. (2006). Effect of way of cooking on content of essential polyunsaturated fatty acids in muscle tissue of humpback salmon (). Food Chemistry, 96(3), 446-451. doi:10.1016/j.foodchem.2005.02.034Grundy, M. M. L., Carrière, F., Mackie, A. R., Gray, D. A., Butterworth, P. J., & Ellis, P. R. (2016). The role of plant cell wall encapsulation and porosity in regulating lipolysis during the digestion of almond seeds. Food & Function, 7(1), 69-78. doi:10.1039/c5fo00758eGuo, Q., Ye, A., Bellissimo, N., Singh, H., & Rousseau, D. (2017). Modulating fat digestion through food structure design. Progress in Lipid Research, 68, 109-118. doi:10.1016/j.plipres.2017.10.001Hao, Z., Dong, H., Li, Z., & Lin, H. (2016). Analysis of physicochemical properties during the processing of Yiluxian, a traditional chinese low-salt fish product. International Journal of Food Science & Technology, 51(10), 2185-2192. doi:10.1111/ijfs.13171Hosomi, R., Yoshida, M., & Fukunaga, K. (2012). Seafood Consumption and Components for Health. Global Journal of Health Science, 4(3). doi:10.5539/gjhs.v4n3p72Humbert, L., Rainteau, D., Tuvignon, N., Wolf, C., Seksik, P., Laugier, R., & Carrière, F. (2018). Postprandial bile acid levels in intestine and plasma reveal altered biliary circulation in chronic pancreatitis patients. Journal of Lipid Research, 59(11), 2202-2213. doi:10.1194/jlr.m084830Hunter, J. E. (2001). Studies on effects of dietary fatty acids as related to their position on triglycerides. Lipids, 36(7), 655-668. doi:10.1007/s11745-001-0770-0LARRAZÁBAL-FUENTES, M. J., ESCRICHE-ROBERTO, I., & CAMACHO-VIDAL, M. D. M. (2009). USE OF IMMERSION AND VACUUM IMPREGNATION IN MARINATED SALMON (SALMO SALAR) PRODUCTION. Journal of Food Processing and Preservation, 33(5), 635-650. doi:10.1111/j.1745-4549.2008.00278.xLarsen, D., Quek, S. Y., & Eyres, L. (2010). Effect of cooking method on the fatty acid profile of New Zealand King Salmon (Oncorhynchus tshawytscha). Food Chemistry, 119(2), 785-790. doi:10.1016/j.foodchem.2009.07.037Lamothe, S., Azimy, N., Bazinet, L., Couillard, C., & Britten, M. (2014). Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment. Food Funct., 5(10), 2621-2631. doi:10.1039/c4fo00203bLaub-Ekgreen, M. H., Martinez-Lopez, B., Frosch, S., & Jessen, F. (2018). The influence of processing conditions on the weight change of single herring (Clupea herengus) fillets during marinating. Food Research International, 108, 331-338. doi:10.1016/j.foodres.2018.03.055Li, L., & Somerset, S. (2014). Digestive system dysfunction in cystic fibrosis: Challenges for nutrition therapy. Digestive and Liver Disease, 46(10), 865-874. doi:10.1016/j.dld.2014.06.011Louis, P., Hold, G. L., & Flint, H. J. (2014). The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology, 12(10), 661-672. doi:10.1038/nrmicro3344Mackie, A., & Macierzanka, A. (2010). Colloidal aspects of protein digestion. Current Opinion in Colloid & Interface Science, 15(1-2), 102-108. doi:10.1016/j.cocis.2009.11.005Maldonado-Valderrama, J., Wilde, P., Macierzanka, A., & Mackie, A. (2011). The role of bile salts in digestion. Advances in Colloid and Interface Science, 165(1), 36-46. doi:10.1016/j.cis.2010.12.002Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T. O. R. S. T. E. N., Bourlieu, C., & Dufour, C. (2014). A standardised static in vitro digestion method suitable for food–an international consensus.Food & Function,5(6), 1113–1124.Motilva, M.-J., & Toldr�, F. (1993). Effect of curing agents and water activity on pork muscle and adipose subcutaneous tissue lipolytic activity. Zeitschrift f�r Lebensmittel-Untersuchung und -Forschung, 196(3), 228-232. doi:10.1007/bf01202737Nieva-Echevarría, B., Goicoechea, E., Manzanos, M. J., & Guillén, M. D. (2015). Usefulness of 1H NMR in assessing the extent of lipid digestion. Food Chemistry, 179, 182-190. doi:10.1016/j.foodchem.2015.01.104Nieva-Echevarría, B., Goicoechea, E., Manzanos, M. J., & Guillén, M. D. (2014). A method based on 1H NMR spectral data useful to evaluate the hydrolysis level in complex lipid mixtures. Food Research International, 66, 379-387. doi:10.1016/j.foodres.2014.09.031Promeyrat, A., Gatellier, P., Lebret, B., Kajak-Siemaszko, K., Aubry, L., & Santé-Lhoutellier, V. (2010). Evaluation of protein aggregation in cooked meat. Food Chemistry, 121(2), 412-417. doi:10.1016/j.foodchem.2009.12.057Sarkar, A., Ye, A., & Singh, H. (2016). On the role of bile salts in the digestion of emulsified lipids. Food Hydrocolloids, 60, 77-84. doi:10.1016/j.foodhyd.2016.03.018Simopoulos, A. (2016). An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients, 8(3), 128. doi:10.3390/nu8030128Spyros, A., Philippidis, A., & Dais, P. (2003). Kinetics of Diglyceride Formation and Isomerization in Virgin Olive Oils by Employing 31P NMR Spectroscopy. Formulation of a Quantitative Measure to Assess Olive Oil Storage History. Journal of Agricultural and Food Chemistry, 52(2), 157-164. doi:10.1021/jf030586jSun, W., Zhou, F., Zhao, M., Yang, B., & Cui, C. (2011). Physicochemical changes of myofibrillar proteins during processing of Cantonese sausage in relation to their aggregation behaviour and in vitro digestibility. Food Chemistry, 129(2), 472-478. doi:10.1016/j.foodchem.2011.04.101Ridlon, J. M., Kang, D.-J., & Hylemon, P. B. (2006). Bile salt biotransformations by human intestinal bacteria. Journal of Lipid Research, 47(2), 241-259. doi:10.1194/jlr.r500013-jlr200Toldrá, F. (2003). Muscle Foods: Water, Structure and Functionality. Food Science and Technology International, 9(3), 173-177. doi:10.1177/1082013203035048Turck, D., Braegger, C. P., Colombo, C., Declercq, D., Morton, A., Pancheva, R., … Wilschanski, M. (2016). ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clinical Nutrition, 35(3), 557-577. doi:10.1016/j.clnu.2016.03.004Zhang, W., Xiao, S., & Ahn, D. U. (2013). Protein Oxidation: Basic Principles and Implications for Meat Quality. Critical Reviews in Food Science and Nutrition, 53(11), 1191-1201. doi:10.1080/10408398.2011.57754

    Fat digestibility in meat products: influence of food structure and gastrointestinal conditions

    Full text link
    [EN] Digestibility of macronutrients depends on the food matrix structure as well as on gastrointestinal conditions, especially in patients with exocrine pancreatic insufficiency. In this situation, an oral enzyme supplementation that promotes nutrient hydrolysis is needed. In this context, in the present study, a static in vitro digestion model was used to assess the lipid digestibility of different meat products (processed and fresh), different intestinal conditions of pH (6 or 7), bile concentration (1 or 10 mM) and doses of the enzyme supplement (1000¿4000 lipase units/g fat). Results showed that processed (unstructured) meats had better matrix degradation during digestion and reached higher values of lipolysis extents (total free fatty acids/g fat) than the natural meat matrices with a statistically significant association (p < .001). Regarding the intestinal medium, pH of 7 and bile concentration of 10 mM contribute to higher matrix degradation and thus, to a higher lipolysis (p < .001).Authors of this article acknowledge the European Union and the Horizon 2020 Research and Innovation Framework Programme (PHC-26-2014 call Self-management of health and disease: citizen engagement and mHealth) for fully funding this research in the context of MyCyFAPP Project, under grant agreement number 643806.Asensio-Grau, A.; Calvo-Lerma, J.; Heredia Gutiérrez, AB.; Andrés Grau, AM. (2018). Fat digestibility in meat products: influence of food structure and gastrointestinal conditions. International Journal of Food Sciences and Nutrition. 8. https://doi.org/10.1080/09637486.2018.1542665S

    Enhancing the nutritional profile and digestibility of lentil flour by solid state fermentation with Pleurotus ostreatus

    Full text link
    [EN] Lentils (Lens culinaris) present an excellent nutrient profile. However, the increasing displacement of legumes from the diet and the possible negative effects of the food matrix and antinutrient factors encourage the application of new strategies to improve nutrient digestibility and to produce food concepts that contribute to the increase of legume consumption. This study approached the solid-state fermentation of lentils with an edible fungus (Pleurotus ostreatus) in order to produce improved lentil flour. Fermentation contributed to the increase of protein (23%), resistant starch (9.8%), and polyphenols (from 2.1 to 3.2 mg gallic acid equivalent per g dry matter). After simulatingin vitrodigestion, fermented flours presented a higher fraction of digested protein (17%) along with lower starch hydrolysis (34vs.24%), while the polyphenol content increased from 3.1 to 7.73 mg gallic acid equivalent per g dry matter. Thus, this study supports the application of solid-state fermentation with this edible fungus to obtain lentil flours with an enhanced digestibility profile as compared to non-fermented counterparts. Lentil flours could be used as a novel raw material in the formulation of new food concepts with an enhanced nutritional profile.Asensio-Grau, A.; Calvo-Lerma, J.; Heredia Gutiérrez, AB.; Andrés Grau, AM. (2020). Enhancing the nutritional profile and digestibility of lentil flour by solid state fermentation with Pleurotus ostreatus. Food & Function. 11(9):7905-7912. https://doi.org/10.1039/d0fo01527jS79057912119Stagnari, F., Maggio, A., Galieni, A., & Pisante, M. (2017). Multiple benefits of legumes for agriculture sustainability: an overview. Chemical and Biological Technologies in Agriculture, 4(1). doi:10.1186/s40538-016-0085-1M. W. Vasconcelos and A. M.Gomes , The legume grains: when tradition goes hand in hand with nutrition , in Traditional Foods , Springer , Boston, MA , 2016 , pp. 189–208World Health Organization , A healthy diet sustainably produced: information sheet (No. WHO/NMH/NHD/18.12) , World Health Organization , 2018Longobardi, F., Innamorato, V., Di Gioia, A., Ventrella, A., Lippolis, V., Logrieco, A. F., … Agostiano, A. (2017). Geographical origin discrimination of lentils (Lens culinaris Medik.) using 1H NMR fingerprinting and multivariate statistical analyses. Food Chemistry, 237, 743-748. doi:10.1016/j.foodchem.2017.05.159Espinosa-Páez, E., Alanis-Guzmán, M., Hernández-Luna, C., Báez-González, J., Amaya-Guerra, C., & Andrés-Grau, A. (2017). Increasing Antioxidant Activity and Protein Digestibility in Phaseolus vulgaris and Avena sativa by Fermentation with the Pleurotus ostreatus Fungus. Molecules, 22(12), 2275. doi:10.3390/molecules22122275Torino, M. I., Limón, R. I., Martínez-Villaluenga, C., Mäkinen, S., Pihlanto, A., Vidal-Valverde, C., & Frias, J. (2013). Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chemistry, 136(2), 1030-1037. doi:10.1016/j.foodchem.2012.09.015Ma, Z., Boye, J. I., & Hu, X. (2018). Nutritional quality and techno-functional changes in raw, germinated and fermented yellow field pea (Pisum sativum L.) upon pasteurization. LWT, 92, 147-154. doi:10.1016/j.lwt.2018.02.018kulkarni, S. S., Nene, S. N., & Joshi, K. S. (2020). A comparative study of production of hydrophobin like proteins (HYD-LPs) in submerged liquid and solid state fermentation from white rot fungus Pleurotus ostreatus. Biocatalysis and Agricultural Biotechnology, 23, 101440. doi:10.1016/j.bcab.2019.101440Hu, J., & Duvnjak, Z. (2004). Production of a Laccase and Decrease of the Phenolic Content in Canola Meal during the Growth of the FungusPleurotus ostreatus in Solid State Fermentation Processes. Engineering in Life Sciences, 4(1), 50-55. doi:10.1002/elsc.200400005Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2018). Effect of cooking methods and intestinal conditions on lipolysis, proteolysis and xanthophylls bioaccessibility of eggs. Journal of Functional Foods, 46, 579-586. doi:10.1016/j.jff.2018.05.025Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702jAssociation of Official Analytical Chemists , Official methods of analysis , AOAC , 15th edn, 2000Tatirat, O., & Charoenrein, S. (2011). Physicochemical properties of konjac glucomannan extracted from konjac flour by a simple centrifugation process. LWT - Food Science and Technology, 44(10), 2059-2063. doi:10.1016/j.lwt.2011.07.019Armellini, R., Peinado, I., Asensio-Grau, A., Pittia, P., Scampicchio, M., Heredia, A., & Andres, A. (2019). In vitro starch digestibility and fate of crocins in pasta enriched with saffron extract. Food Chemistry, 283, 155-163. doi:10.1016/j.foodchem.2019.01.041Mishra, S., Monro, J., & Hedderley, D. (2008). Effect of Processing on Slowly Digestible Starch and Resistant Starch in Potato. Starch - Stärke, 60(9), 500-507. doi:10.1002/star.200800209Chang, C.-H., Lin, H.-Y., Chang, C.-Y., & Liu, Y.-C. (2006). Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. Journal of Food Engineering, 77(3), 478-485. doi:10.1016/j.jfoodeng.2005.06.061Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6-7), 669-675. doi:10.1016/j.jfca.2006.01.003Sotomayor, C., Frias, J., Vidal-Valverde, C., Fornal, J., Sadowska, J., & Urbano, G. (1999). Lentil Starch Content and its Microscopical Structure as Influenced by Natural Fermentation. Starch - Stärke, 51(5), 152-156. doi:10.1002/(sici)1521-379x(199905)51:53.0.co;2-nPaz-Yépez, C., Peinado, I., Heredia, A., & Andrés, A. (2019). Influence of particle size and intestinal conditions on in vitro lipid and protein digestibility of walnuts and peanuts. Food Research International, 119, 951-959. doi:10.1016/j.foodres.2018.11.014Calvo-Lerma, J., Paz-Yépez, C., Asensio-Grau, A., Heredia, A., & Andrés, A. (2020). Impact of Processing and Intestinal Conditions on in Vitro Digestion of Chia (Salvia hispanica) Seeds and Derivatives. Foods, 9(3), 290. doi:10.3390/foods9030290Angulo-Bejarano, P. I., Verdugo-Montoya, N. M., Cuevas-Rodríguez, E. O., Milán-Carrillo, J., Mora-Escobedo, R., Lopez-Valenzuela, J. A., … Reyes-Moreno, C. (2008). Tempeh flour from chickpea (Cicer arietinum L.) nutritional and physicochemical properties. Food Chemistry, 106(1), 106-112. doi:10.1016/j.foodchem.2007.05.049Zhao, Y., Sun-Waterhouse, D., Zhao, M., Zhao, Q., Qiu, C., & Su, G. (2018). Effects of solid-state fermentation and proteolytic hydrolysis on defatted soybean meal. LWT, 97, 496-502. doi:10.1016/j.lwt.2018.06.008Adamović, M., Grubić, G., Milenković, I., Jovanović, R., Protić, R., Sretenović, L., & Stoićević, L. (1998). The biodegradation of wheat straw by Pleurotus ostreatus mushrooms and its use in cattle feeding. Animal Feed Science and Technology, 71(3-4), 357-362. doi:10.1016/s0377-8401(97)00150-8Hur, S. J., Lee, S. Y., Kim, Y.-C., Choi, I., & Kim, G.-B. (2014). Effect of fermentation on the antioxidant activity in plant-based foods. Food Chemistry, 160, 346-356. doi:10.1016/j.foodchem.2014.03.112Dudonné, S., Vitrac, X., Coutière, P., Woillez, M., & Mérillon, J.-M. (2009). Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. Journal of Agricultural and Food Chemistry, 57(5), 1768-1774. doi:10.1021/jf803011rD. H. Alpers , Digestion and absorption of carbohydrates and proteins , in Physiology of the Gastrointestinal Tract , 1987 , pp. 1469–1487Osman, M. A. (2004). Changes in sorghum enzyme inhibitors, phytic acid, tannins and in vitro protein digestibility occurring during Khamir (local bread) fermentation. Food Chemistry, 88(1), 129-134. doi:10.1016/j.foodchem.2003.12.038Lena, G. D., Patroni, E., & Quaglia, G. B. (1997). Improving the nutritional value of wheat bran by a white-rot fungus. International Journal of Food Science & Technology, 32(6), 513-519. doi:10.1111/j.1365-2621.1997.tb02125.xAsensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2019). In vitro study of cheese digestion: Effect of type of cheese and intestinal conditions on macronutrients digestibility. LWT, 113, 108278. doi:10.1016/j.lwt.2019.108278Sandhu, K. S., & Lim, S.-T. (2008). Digestibility of legume starches as influenced by their physical and structural properties. Carbohydrate Polymers, 71(2), 245-252. doi:10.1016/j.carbpol.2007.05.036Frei, M., Siddhuraju, P., & Becker, K. (2003). Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food Chemistry, 83(3), 395-402. doi:10.1016/s0308-8146(03)00101-8Asp, N.-G., van Amelsvoort, J. M. M., & Hautvast, J. G. A. J. (1996). Nutritional Implications Of Resistant Starch. Nutrition Research Reviews, 9(1), 1-31. doi:10.1079/nrr19960004Haenen, D., Zhang, J., Souza da Silva, C., Bosch, G., van der Meer, I. M., van Arkel, J., … Hooiveld, G. J. E. J. (2013). A Diet High in Resistant Starch Modulates Microbiota Composition, SCFA Concentrations, and Gene Expression in Pig Intestine. The Journal of Nutrition, 143(3), 274-283. doi:10.3945/jn.112.169672Pérez-Jiménez, J., & Saura-Calixto, F. (2005). Literature Data May Underestimate the Actual Antioxidant Capacity of Cereals. Journal of Agricultural and Food Chemistry, 53(12), 5036-5040. doi:10.1021/jf050049

    Screening the impact of food co-digestion on lipolysis under sub-optimal intestinal conditions

    Full text link
    [EN] The scarce literature about the effect of meal-factors have on lipids digestibility encouraged the present study, in which olive oil was co-digested with naturally fat-free matrices that were rich in carbohydrate (potato and bread) or protein (degreased fresh cheese, hake and turkey) in single, binary and ternary combinations. Digestion was simulated in vitro, and the effect of co-digestion on the release of free fatty acid (FFA) from oil lipolysis were measured by gas chromatography-mass spectrometry. Regarding total FFA release, higher values were found in carbohydrate-rich systems, especially in potato, than in those with protein matrices. Thus, when co-digesting a carbohydrate matrix in addition to one or two protein matrices, lipolysis was reduced. This finding was explained by the carbohydrate and protein ratio of the resulting combinations, as the release of FFA increased with the carbohydrate/protein ratio (R-2 = 0.87, p < 0.001 in potato; R-2 = 0.81, p = 0.04 in bread systems). This study supposes the first approach towards characterisation of lipid digestion regarding food matrix nutritional composition.Authors of this paper acknowledge the European Union and the Horizon 2020 Research and Innovation Framework Programme (PHC-26-2014 call Self-management of health and disease: citizen engagement and mHealth) for fully funding this research under grant agreement number 643806.Calvo-Lerma, J.; Asensio-Grau, A.; Heredia Gutiérrez, AB.; Andrés Grau, AM. (2020). Screening the impact of food co-digestion on lipolysis under sub-optimal intestinal conditions. LWT - Food Science & Technology (Online). 118:1-6. https://doi.org/10.1016/j.lwt.2019.108792S16118Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2018). Effect of cooking methods and intestinal conditions on lipolysis, proteolysis and xanthophylls bioaccessibility of eggs. Journal of Functional Foods, 46, 579-586. doi:10.1016/j.jff.2018.05.025Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2019). In vitro study of cheese digestion: Effect of type of cheese and intestinal conditions on macronutrients digestibility. LWT, 113, 108278. doi:10.1016/j.lwt.2019.108278Bedford, M. R., & Classen, H. L. (1992). Reduction of Intestinal Viscosity through Manipulation of Dietary Rye and Pentosanase Concentration is Effected through Changes in the Carbohydrate Composition of the Intestinal Aqueous Phase and Results in Improved Growth Rate and Food Conversion Efficiency of Broiler Chicks. The Journal of Nutrition, 122(3), 560-569. doi:10.1093/jn/122.3.560Bellesi, F. A., Pizones Ruiz-Henestrosa, V. M., & Pilosof, A. M. R. (2014). Behavior of protein interfacial films upon bile salts addition. Food Hydrocolloids, 36, 115-122. doi:10.1016/j.foodhyd.2013.09.010Borges, T. H., Pereira, J. A., Cabrera-Vique, C., Lara, L., Oliveira, A. F., & Seiquer, I. (2017). Characterization of Arbequina virgin olive oils produced in different regions of Brazil and Spain: Physicochemical properties, oxidative stability and fatty acid profile. Food Chemistry, 215, 454-462. doi:10.1016/j.foodchem.2016.07.162Brockerhoff, H., & Yurkowski, M. (1966). Stereospecific analyses of several vegetable fats. Journal of Lipid Research, 7(1), 62-64. doi:10.1016/s0022-2275(20)39585-7Calvo-Lerma, J., Fornés-Ferrer, V., Peinado, I., Heredia, A., Ribes-Koninckx, C., & Andrés, A. (2019). A first approach for an evidence-based in vitro digestion method to adjust pancreatic enzyme replacement therapy in cystic fibrosis. PLOS ONE, 14(2), e0212459. doi:10.1371/journal.pone.0212459Capuano, E., Oliviero, T., Fogliano, V., & Pellegrini, N. (2018). Role of the food matrix and digestion on calculation of the actual energy content of food. Nutrition Reviews, 76(4), 274-289. doi:10.1093/nutrit/nux072Carrière, F., Renou, C., Lopez, V., de Caro, J., Ferrato, F., Lengsfeld, H., … Verger, R. (2000). The specific activities of human digestive lipases measured from the in vivo and in vitro lipolysis of test meals. Gastroenterology, 119(4), 949-960. doi:10.1053/gast.2000.18140De Souza, R. J., Mente, A., Maroleanu, A., Cozma, A. I., Ha, V., Kishibe, T., … Anand, S. S. (2015). Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ, h3978. doi:10.1136/bmj.h3978Gelfond, D., Ma, C., Semler, J., & Borowitz, D. (2012). Intestinal pH and Gastrointestinal Transit Profiles in Cystic Fibrosis Patients Measured by Wireless Motility Capsule. Digestive Diseases and Sciences, 58(8), 2275-2281. doi:10.1007/s10620-012-2209-1Golding, M., & Wooster, T. J. (2010). The influence of emulsion structure and stability on lipid digestion. Current Opinion in Colloid & Interface Science, 15(1-2), 90-101. doi:10.1016/j.cocis.2009.11.006Guo, Q., Ye, A., Bellissimo, N., Singh, H., & Rousseau, D. (2017). Modulating fat digestion through food structure design. Progress in Lipid Research, 68, 109-118. doi:10.1016/j.plipres.2017.10.001Humbert, L., Rainteau, D., Tuvignon, N., Wolf, C., Seksik, P., Laugier, R., & Carrière, F. (2018). Postprandial bile acid levels in intestine and plasma reveal altered biliary circulation in chronic pancreatitis patients. Journal of Lipid Research, 59(11), 2202-2213. doi:10.1194/jlr.m084830Hunter, J. E. (2001). Studies on effects of dietary fatty acids as related to their position on triglycerides. Lipids, 36(7), 655-668. doi:10.1007/s11745-001-0770-0Jenkins, D. J., Thorne, M. J., Wolever, T. M., Jenkins, A. L., Rao, A. V., & Thompson, L. U. (1987). The effect of starch-protein interaction in wheat on the glycemic response and rate of in vitro digestion. The American Journal of Clinical Nutrition, 45(5), 946-951. doi:10.1093/ajcn/45.5.946Kong, F., Tang, J., Lin, M., & Rasco, B. (2008). Thermal effects on chicken and salmon muscles: Tenderness, cook loss, area shrinkage, collagen solubility and microstructure. LWT - Food Science and Technology, 41(7), 1210-1222. doi:10.1016/j.lwt.2007.07.020Kristensen, M., & Jensen, M. G. (2011). Dietary fibres in the regulation of appetite and food intake. Importance of viscosity. Appetite, 56(1), 65-70. doi:10.1016/j.appet.2010.11.147Li, Y., & McClements, D. J. (2010). New Mathematical Model for Interpreting pH-Stat Digestion Profiles: Impact of Lipid Droplet Characteristics on in Vitro Digestibility. Journal of Agricultural and Food Chemistry, 58(13), 8085-8092. doi:10.1021/jf101325mMinekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702jOzturk, B., Argin, S., Ozilgen, M., & McClements, D. J. (2015). Nanoemulsion delivery systems for oil-soluble vitamins: Influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility. Food Chemistry, 187, 499-506. doi:10.1016/j.foodchem.2015.04.065Paz-Yépez, C., Peinado, I., Heredia, A., & Andrés, A. (2019). Influence of particle size and intestinal conditions on in vitro lipid and protein digestibility of walnuts and peanuts. Food Research International, 119, 951-959. doi:10.1016/j.foodres.2018.11.014Pilosof, A. M. R. (2017). Potential impact of interfacial composition of proteins and polysaccharides stabilized emulsions on the modulation of lipolysis. The role of bile salts. Food Hydrocolloids, 68, 178-185. doi:10.1016/j.foodhyd.2016.08.030Sasaki, T., & Kohyama, K. (2012). Influence of non-starch polysaccharides on the in vitro digestibility and viscosity of starch suspensions. Food Chemistry, 133(4), 1420-1426. doi:10.1016/j.foodchem.2012.02.029Sikkens, E. C. M., Cahen, D. L., Kuipers, E. J., & Bruno, M. J. (2010). Pancreatic enzyme replacement therapy in chronic pancreatitis. Best Practice & Research Clinical Gastroenterology, 24(3), 337-347. doi:10.1016/j.bpg.2010.03.006Small, D. M. (1991). The Effects of Glyceride Structure on Absorption and Metabolism. Annual Review of Nutrition, 11(1), 413-434. doi:10.1146/annurev.nu.11.070191.002213Turck, D., Braegger, C. P., Colombo, C., Declercq, D., Morton, A., Pancheva, R., … Wilschanski, M. (2016). ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clinical Nutrition, 35(3), 557-577. doi:10.1016/j.clnu.2016.03.004Yaich, H., Garna, H., Besbes, S., Paquot, M., Blecker, C., & Attia, H. (2011). Chemical composition and functional properties of Ulva lactucaUlva lactuca seaweed collected in Tunisia. Food Chemistry, 128(4), 895–901. https://doi.org/10.1016/j.foodchem. 2011.03.114.Ye, Z., Cao, C., Liu, Y., Cao, P., & Li, Q. (2018). Digestion fates of different edible oils vary with their composition specificities and interactions with bile salts. Food Research International, 111, 281-290. doi:10.1016/j.foodres.2018.05.04

    Impact of processing and intestinal conditions on in vitro digestion of Chia (Salvia hispanica) seeds and derivatives

    Full text link
    [EN] Chia seeds present with an excellent nutrient profile, including polyunsaturated fat, protein, fibre and bioactive compounds, which make them a potential food or ingredient to bring beneficial health effects. However, their tough structure could mean that these seeds remain hardly disrupted during digestion, thus preventing the release and digestibility of nutrients. In the present study, different chia products (seeds, whole flour, partially defatted flour and sprouts) were assessed in terms of proteolysis, lipolysis, calcium and polyphenols bioaccessibility and antioxidant activity. In vitro digestions were performed supporting standard intestinal (pH 7, bile salts concentration 10 mM) and altered (pH 6, bile salts concentration 1 mM) conditions. The altered conditions significantly reduced lipolysis, but not proteolysis. Regarding the food matrix, compared to the chia seeds, whole and partially defatted flour increased the hydrolysis of lipids and protein, relating to reduced particle size. Sprouting had an enhancing effect on proteolysis but prevented lipolysis. Calcium bioaccessibility dropped in all the samples in the two intestinal conditions. The digestion process led to increased polyphenols bioaccessibility in all the structures, but reduced antioxidant activity except in the milled structures. In conclusion, milling should be applied to chia seeds prior to consumption in cases where enhancing the potential uptake of macro and micronutrients is targeted, and sprouting is suitable to enhance protein digestibility and reduce lipolysis.This research was funded by Conselleria de Educacio i Investigacio de la Generalitat Valenciana, by the post-doctoral grant given to Joaquim Calvo-Lerma (Grant number APOSTD 2019-102).Calvo-Lerma, J.; Paz-Yépez, C.; Asensio-Grau, A.; Heredia Gutiérrez, AB.; Andrés Grau, AM. (2020). Impact of processing and intestinal conditions on in vitro digestion of Chia (Salvia hispanica) seeds and derivatives. Foods. 9(3):1-13. https://doi.org/10.3390/foods9030290S11393Capitani, M. I., Spotorno, V., Nolasco, S. M., & Tomás, M. C. (2012). Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT - Food Science and Technology, 45(1), 94-102. doi:10.1016/j.lwt.2011.07.012Zettel, V., & Hitzmann, B. (2018). Applications of chia (Salvia hispanica L.) in food products. Trends in Food Science & Technology, 80, 43-50. doi:10.1016/j.tifs.2018.07.011Reyes-Caudillo, E., Tecante, A., & Valdivia-López, M. A. (2008). Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chemistry, 107(2), 656-663. doi:10.1016/j.foodchem.2007.08.062Muñoz, L. A., Cobos, A., Diaz, O., & Aguilera, J. M. (2012). Chia seeds: Microstructure, mucilage extraction and hydration. Journal of Food Engineering, 108(1), 216-224. doi:10.1016/j.jfoodeng.2011.06.037Inglett, G. E., Chen, D., Liu, S. X., & Lee, S. (2014). Pasting and rheological properties of oat products dry-blended with ground chia seeds. LWT - Food Science and Technology, 55(1), 148-156. doi:10.1016/j.lwt.2013.07.011Pellegrini, M., Lucas-Gonzalez, R., Fernández-López, J., Ricci, A., Pérez-Álvarez, J. A., Sterzo, C. L., & Viuda-Martos, M. (2017). Bioaccessibility of polyphenolic compounds of six quinoa seeds during in vitro gastrointestinal digestion. Journal of Functional Foods, 38, 77-88. doi:10.1016/j.jff.2017.08.042Zieliński, H., Frias, J., Piskuła, M. K., Kozłowska, H., & Vidal-Valverde, C. (2006). The effect of germination process on the superoxide dismutase-like activity and thiamine, riboflavin and mineral contents of rapeseeds. Food Chemistry, 99(3), 516-520. doi:10.1016/j.foodchem.2005.08.014KYLEN, A. M., & McCREADY, R. M. (1975). NUTRIENTS IN SEEDS AND SPROUTS OF ALFALFA, LENTILS, MUNG BEANS AND SOYBEANS. Journal of Food Science, 40(5), 1008-1009. doi:10.1111/j.1365-2621.1975.tb02254.xGrundy, M. M.-L., Lapsley, K., & Ellis, P. R. (2016). A review of the impact of processing on nutrient bioaccessibility and digestion of almonds. International Journal of Food Science & Technology, 51(9), 1937-1946. doi:10.1111/ijfs.13192Calvo-Lerma, J., Fornés-Ferrer, V., Heredia, A., & Andrés, A. (2019). In vitro digestion models to assess lipolysis: The impact of the simulated conditions of gastric and intestinal pH, bile salts and digestive fluids. Food Research International, 125, 108511. doi:10.1016/j.foodres.2019.108511Humbert, L., Rainteau, D., Tuvignon, N., Wolf, C., Seksik, P., Laugier, R., & Carrière, F. (2018). Postprandial bile acid levels in intestine and plasma reveal altered biliary circulation in chronic pancreatitis patients. Journal of Lipid Research, 59(11), 2202-2213. doi:10.1194/jlr.m084830Gelfond, D., Ma, C., Semler, J., & Borowitz, D. (2012). Intestinal pH and Gastrointestinal Transit Profiles in Cystic Fibrosis Patients Measured by Wireless Motility Capsule. Digestive Diseases and Sciences, 58(8), 2275-2281. doi:10.1007/s10620-012-2209-1Robinson, P. J., Smith, A. L., & Sly, P. D. (1990). Duodenal pH in cystic fibrosis and its relationship to fat malabsorption. Digestive Diseases and Sciences, 35(10), 1299-1304. doi:10.1007/bf01536423Harries, J. T., Muller, D. P., McCollum, J. P., Lipson, A., Roma, E., & Norman, A. P. (1979). Intestinal bile salts in cystic fibrosis: studies in the patient and experimental animal. Archives of Disease in Childhood, 54(1), 19-24. doi:10.1136/adc.54.1.19Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2018). Effect of cooking methods and intestinal conditions on lipolysis, proteolysis and xanthophylls bioaccessibility of eggs. Journal of Functional Foods, 46, 579-586. doi:10.1016/j.jff.2018.05.025Asensio-Grau, A., Calvo-Lerma, J., Heredia, A., & Andrés, A. (2018). Fat digestibility in meat products: influence of food structure and gastrointestinal conditions. International Journal of Food Sciences and Nutrition, 70(5), 530-539. doi:10.1080/09637486.2018.1542665Paz-Yépez, C., Peinado, I., Heredia, A., & Andrés, A. (2019). Influence of particle size and intestinal conditions on in vitro lipid and protein digestibility of walnuts and peanuts. Food Research International, 119, 951-959. doi:10.1016/j.foodres.2018.11.014Paz-Yépez, C., Peinado, I., Heredia, A., & Andrés, A. (2019). Lipids digestibility and polyphenols release under in vitro digestion of dark, milk and white chocolate. Journal of Functional Foods, 52, 196-203. doi:10.1016/j.jff.2018.10.028Calvo-Lerma, J., Fornés-Ferrer, V., Heredia, A., & Andrés, A. (2018). In Vitro Digestion of Lipids in Real Foods: Influence of Lipid Organization Within the Food Matrix and Interactions with Nonlipid Components. Journal of Food Science, 83(10), 2629-2637. doi:10.1111/1750-3841.14343Ixtaina, V. Y., Martínez, M. L., Spotorno, V., Mateo, C. M., Maestri, D. M., Diehl, B. W. K., … Tomás, M. C. (2011). Characterization of chia seed oils obtained by pressing and solvent extraction. Journal of Food Composition and Analysis, 24(2), 166-174. doi:10.1016/j.jfca.2010.08.006Pająk, P., Socha, R., Broniek, J., Królikowska, K., & Fortuna, T. (2019). Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chemistry, 275, 69-76. doi:10.1016/j.foodchem.2018.09.081Mandalari, G., Parker, M., Grundy, M., Grassby, T., Smeriglio, A., Bisignano, C., … Wilde, P. (2018). Understanding the Effect of Particle Size and Processing on Almond Lipid Bioaccessibility through Microstructural Analysis: From Mastication to Faecal Collection. Nutrients, 10(2), 213. doi:10.3390/nu10020213Aburub, A., Fischer, M., Camilleri, M., Semler, J. R., & Fadda, H. M. (2018). Comparison of pH and motility of the small intestine of healthy subjects and patients with symptomatic constipation using the wireless motility capsule. International Journal of Pharmaceutics, 544(1), 158-164. doi:10.1016/j.ijpharm.2018.04.031Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702jBrodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunção, R., Ballance, S., … Recio, I. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 14(4), 991-1014. doi:10.1038/s41596-018-0119-1Lamothe, S., Azimy, N., Bazinet, L., Couillard, C., & Britten, M. (2014). Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment. Food Funct., 5(10), 2621-2631. doi:10.1039/c4fo00203bBax, M.-L., Aubry, L., Ferreira, C., Daudin, J.-D., Gatellier, P., Rémond, D., & Santé-Lhoutellier, V. (2012). Cooking Temperature Is a Key Determinant of in Vitro Meat Protein Digestion Rate: Investigation of Underlying Mechanisms. Journal of Agricultural and Food Chemistry, 60(10), 2569-2576. doi:10.1021/jf205280yLamothe, S., Corbeil, M.-M., Turgeon, S. L., & Britten, M. (2012). Influence of cheese matrix on lipid digestion in a simulated gastro-intestinal environment. Food & Function, 3(7), 724. doi:10.1039/c2fo10256kBarrera, C., Betoret, N., Corell, P., & Fito, P. (2009). Effect of osmotic dehydration on the stabilization of calcium-fortified apple slices (var. Granny Smith): Influence of operating variables on process kinetics and compositional changes. Journal of Food Engineering, 92(4), 416-424. doi:10.1016/j.jfoodeng.2008.12.034Noël, L., Carl, M., Vastel, C., & Guérin, T. (2008). Determination of sodium, potassium, calcium and magnesium content in milk products by flame atomic absorption spectrometry (FAAS): A joint ISO/IDF collaborative study. International Dairy Journal, 18(9), 899-904. doi:10.1016/j.idairyj.2008.01.003Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 152-178. doi:10.1016/s0076-6879(99)99017-1Antolovich, M., Prenzler, P. D., Patsalides, E., McDonald, S., & Robards, K. (2001). Methods for testing antioxidant activity. The Analyst, 127(1), 183-198. doi:10.1039/b009171pHu, M., McClements, D. J., & Decker, E. A. (2003). Impact of Whey Protein Emulsifiers on the Oxidative Stability of Salmon Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 51(5), 1435-1439. doi:10.1021/jf0203794Guo, Q., Ye, A., Lad, M., Ferrua, M., Dalgleish, D., & Singh, H. (2015). Disintegration kinetics of food gels during gastric digestion and its role on gastric emptying: an in vitro analysis. Food & Function, 6(3), 756-764. doi:10.1039/c4fo00700jJu, Z. Y., Hettiarachchy, N. S., & Rath, N. (2001). Extraction, denaturation and hydrophobic Properties of Rice Flour Proteins. Journal of Food Science, 66(2), 229-232. doi:10.1111/j.1365-2621.2001.tb11322.xMOSTAFA, M., RAHMA, E., & RADY, A. (1987). Chemical and nutritional changes in soybean during germination. Food Chemistry, 23(4), 257-275. doi:10.1016/0308-8146(87)90113-0Benincasa, P., Falcinelli, B., Lutts, S., Stagnari, F., & Galieni, A. (2019). Sprouted Grains: A Comprehensive Review. Nutrients, 11(2), 421. doi:10.3390/nu11020421Guzmán-Ortiz, F. A., San Martín-Martínez, E., Valverde, M. E., Rodríguez-Aza, Y., Berríos, J. D. J., & Mora-Escobedo, R. (2017). Profile analysis and correlation across phenolic compounds, isoflavones and antioxidant capacity during germination of soybeans (Glycine max L.). CyTA - Journal of Food, 15(4), 516-524. doi:10.1080/19476337.2017.1302995Zhu, Y., Hsu, W. H., & Hollis, J. H. (2013). The Impact of Food Viscosity on Eating Rate, Subjective Appetite, Glycemic Response and Gastric Emptying Rate. PLoS ONE, 8(6), e67482. doi:10.1371/journal.pone.0067482Logan, K., Wright, A. J., & Goff, H. D. (2015). Correlating the structure and in vitro digestion viscosities of different pectin fibers to in vivo human satiety. Food & Function, 6(1), 62-70. doi:10.1039/c4fo00543kDesnuelle, P., & Savary, P. (1963). Specificities of lipases. Journal of Lipid Research, 4(4), 369-384. doi:10.1016/s0022-2275(20)40278-0Cui, L., Gao, L., Zheng, M., Li, J., Zhang, L., Wu, Y., … Huang, D. (2019). Bioaccessibility of short chain chlorinated paraffins in meat and seafood. Science of The Total Environment, 668, 996-1003. doi:10.1016/j.scitotenv.2019.03.043Benarous, K., Djeridane, A., Kameli, A., & Yousfi, M. (2013). Inhibition of Candida rugosa Lipase by Secondary Metabolites Extracts of Three Algerian Plants and their Antioxydant Activities. Current Enzyme Inhibition, 9(1), 75-82. doi:10.2174/1573408011309010010TAYLOR, J. R. N., NOVELLIE, L., & LIEBENBERG, N. V. D. W. (1985). Protein Body Degradation in the Starchy Endosperm of Germinating Sorghum. Journal of Experimental Botany, 36(8), 1287-1295. doi:10.1093/jxb/36.8.1287Hamaker, B. R., Kirleis, A. W., Mertz, E. T., & Axtell, J. D. (1986). Effect of cooking on the protein profiles and in vitro digestibility of sorghum and maize. Journal of Agricultural and Food Chemistry, 34(4), 647-649. doi:10.1021/jf00070a014James, W. P. ., Branch, W. ., & Southgate, D. A. . (1978). CALCIUM BINDING BY DIETARY FIBRE. The Lancet, 311(8065), 638-639. doi:10.1016/s0140-6736(78)91141-8Hu, M., Li, Y., Decker, E. A., & McClements, D. J. (2010). Role of calcium and calcium-binding agents on the lipase digestibility of emulsified lipids using an in vitro digestion model. Food Hydrocolloids, 24(8), 719-725. doi:10.1016/j.foodhyd.2010.03.010Govers, M. J., & Van der Meet, R. (1993). Effects of dietary calcium and phosphate on the intestinal interactions between calcium, phosphate, fatty acids, and bile acids. Gut, 34(3), 365-370. doi:10.1136/gut.34.3.365Rein, M. J., Renouf, M., Cruz-Hernandez, C., Actis-Goretta, L., Thakkar, S. K., & da Silva Pinto, M. (2013). Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. British Journal of Clinical Pharmacology, 75(3), 588-602. doi:10.1111/j.1365-2125.2012.04425.xRahman, M. J., de Camargo, A. C., & Shahidi, F. (2017). Phenolic and polyphenolic profiles of chia seeds and their in vitro biological activities. Journal of Functional Foods, 35, 622-634. doi:10.1016/j.jff.2017.06.044Akillioglu, H. G., & Karakaya, S. (2010). Changes in total phenols, total flavonoids, and antioxidant activities of common beans and pinto beans after soaking, cooking, and in vitro digestion process. Food Science and Biotechnology, 19(3), 633-639. doi:10.1007/s10068-010-0089-8Tagliazucchi, D., Verzelloni, E., Bertolini, D., & Conte, A. (2010). In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chemistry, 120(2), 599-606. doi:10.1016/j.foodchem.2009.10.030Hidalgo, M., Sánchez-Moreno, C., & de Pascual-Teresa, S. (2010). Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chemistry, 121(3), 691-696. doi:10.1016/j.foodchem.2009.12.09

    In Vitro Simulation of Human Colonic Fermentation:A Practical Approach towards Models¿ Design and Analytical Tools

    Full text link
    [EN] The human colonic microbiota plays an important role in the food digestion process and has a key role in maintaining health status. This community of microbes is inter-individually different due to several factors that modulate its composition. Among them, diet is one of the most relevant, which, in turn, is affected by environmental, economic, and cultural considerations. These pieces of evidence have promoted the study of the influence of diet on gut microbiota and the development of in vitro models that simulate the colonic digestion of foods. This narrative review aims to present a technical approach of the in vitro gut models available to evaluate the impact of diet on human colonic microbiota. A description and comments on the main characteristics, parameters, applicability, faecal inoculum preparation, and analytical tools are made. Despite the progress of in vitro colonic digestion models and metaomic applicability in this research field, there are still some challenges to face due to the lack of a consensus on the methodologies to conduct in vitro colonic digestions and the need to integrate the metaomic data to fully understand the influence of food in human colonic microbiota.The authors would like to thank the Conselleria de Educacio i Investigacio de la Generalitat Valenciana and also the European Union ("El Fondo Social Europeo (FSE) invierte en tu futuro") for the PhD scholarship given to Andrea Asensio Grau (ACIF/2017/008) and for the post-doctoral grant given to Joaquim Calvo-Lerma (Grant number APOSTD 2019-102).This study was developed thanks to the equipment funded with the support from the Generalitat Valenciana IDIFEDER/2018/041 (PO FEDER Comunitat Valenciana 2014-2020).Veintimilla-Gozalbo, E.; Asensio-Grau, A.; Calvo-Lerma, J.; Heredia Gutiérrez, AB.; Andrés Grau, AM. (2021). In Vitro Simulation of Human Colonic Fermentation:A Practical Approach towards Models¿ Design and Analytical Tools. Applied Sciences. 11(17):1-15. https://doi.org/10.3390/app11178135S115111

    The Potential of Self-Management mHealth for Pediatric Cystic Fibrosis: Mixed-Methods Study for Health Care and App Assessment

    Get PDF
    Background: Remote care services and patient empowerment have boosted mobile health (mHealth). A study of user needs related to mHealth for pediatric cystic fibrosis (PCF) identified the set of preferred features mobile apps should support; however, the potential use of PCF apps and their suitability to fit into PCF clinical management remains unexplored. Objective: We examine whether PCF holds potential for the implementation of mHealth care. Methods: The study is based on a literature review and qualitative analysis of content and was conducted in two parts: (1) we reviewed scientific and gray literature to explore how European countries manage PCF and conducted a qualitative study of 6 PCF units and (2) we performed a systematic review of apps available in the myhealthapps.net repository searching for cystic fibrosis (CF) management and nutrition apps, which we analyzed for characteristics, business models, number of downloads, and usability. Results: European CF routine care guidelines are acknowledged in most European countries, and treatments are fully covered in almost all countries. The majority of teams in CF units are interdisciplinary. With respect to the systematic review of apps, we reviewed 12 apps for CF management and 9 for general nutrition management in the myhealthapps.net directory. All analyzed apps provided functionalities for recording aspects related to the disease and nutrition such as medication, meals, measurements, reminders, and educational material. None of the apps reviewed in this study supported pancreatic enzyme replacement therapy. CF apps proved to be less appealing and usable than nutrition apps (2.66 [SD 1.15] vs 4.01 [SD 0.90]; P<.001, z-value: –2.6). User needs detected in previous research are partially matched by current apps for CF management. Conclusions: The health care context for PCF is a unique opportunity for the adoption of mHealth. Well-established clinical guidelines, heterogeneous clinical teams, and coverage by national health care systems provide a suitable scenario for the use of mHealth solutions. However, available apps for CF self-management do not cover essential aspects such as nutrition and education. To increase the adoption of mHealth for CF self-management, new apps should include these features.European Commission / MyCyFAPP H2020–64380

    A first approach for an evidence-based in vitro digestion method to adjust pancreatic enzyme replacement therapy in cystic fibrosis

    Full text link
    [EN] Background Patients with cystic fibrosis have to take enzymatic supplements to allow for food digestion. However, an evidence-based method to adjust Pancreatic Enzyme Replacement Therapy (PERT) is inexistent, and lipid content of meals is used as a rough criterion. Objective In this study, an in vitro digestion model was set up to determine the theoretical optimal dose (TOD) of enzymatic supplement for a selection of foods, which is the dose that allows for maximum lipolysis extent. Methods A static in vitro digestion model was applied to simulate digestion of eight foods covering a wide range of lipid contents. First, the dose of the enzymatic supplement was fixed at 2000 lipase units per gram of fat (LU/g fat) using intestinal pH and bile salt concentration as variables. Second, intestinal pH and bile salt concentrations were fixed and the variable was the dose of the enzymatic supplement. Lipolysis extent was determined by measuring the free fatty acids released from initial triglycerides content of foods after digestion. Results in terms of percentage of lipolysis extent were fitted into a linear-mixed segmented model and the deducted equations were used to predict the TOD to reach 90% of lipolysis in every food. In addition, the effect of intestinal pH and bile salt concentration were investigated. Results The predictive equations obtained for the assessed foods showed that lipolysis was not only dependent on the dose of the enzyme supplement or the lipid content. Moreover, intestinal pH and bile salt concentration had significant effects on lipolysis. Therefore an evidence-based model can be developed taking into account these variables. Conclusions Depending on food characteristics, a specific TOD should be assigned to achieve an optimal digestion extent. This work represents a first step towards an evidence-based method for PERT dosing, which will be applied in an in vivo setting to validate its efficacy.This work was fully funded by the European Union and the Horizon 2020 Research and Innovation Framework Programme (PHC-26-2014 call Self management of health and disease: citizen engagement and mHealth) under grant number 643806.Calvo-Lerma, J.; Fornes-Ferrer, V.; Peinado Pardo, I.; Heredia Gutiérrez, AB.; Ribes-Koninckx C.; Andrés Grau, AM. (2019). A first approach for an evidence-based in vitro digestion method to adjust pancreatic enzyme replacement therapy in cystic fibrosis. PLoS ONE. 14(2):1-14. https://doi.org/10.1371/journal.pone.0212459S114142Lesmes, U., & McClements, D. J. (2012). Controlling lipid digestibility: Response of lipid droplets coated by β-lactoglobulin-dextran Maillard conjugates to simulated gastrointestinal conditions. Food Hydrocolloids, 26(1), 221-230. doi:10.1016/j.foodhyd.2011.05.011Humbert, L., Rainteau, D., Tuvignon, N., Wolf, C., Seksik, P., Laugier, R., & Carrière, F. (2018). Postprandial bile acid levels in intestine and plasma reveal altered biliary circulation in chronic pancreatitis patients. Journal of Lipid Research, 59(11), 2202-2213. doi:10.1194/jlr.m084830Lamothe, S., Azimy, N., Bazinet, L., Couillard, C., & Britten, M. (2014). Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment. Food Funct., 5(10), 2621-2631. doi:10.1039/c4fo00203bMuggeo, V. &amp; Muggeo, V. M. R. Segmented mixed models with random changepoints in R Working paper (2016)
    corecore