106 research outputs found

    Design and characterization of the POLARBEAR-2b and POLARBEAR-2c cosmic microwave background cryogenic receivers

    Full text link
    The POLARBEAR-2/Simons Array Cosmic Microwave Background (CMB) polarization experiment is an upgrade and expansion of the existing POLARBEAR-1 (PB-1) experiment, located in the Atacama desert in Chile. Along with the CMB temperature and EE-mode polarization anisotropies, PB-1 and the Simons Array study the CMB BB-mode polarization anisotropies produced at large angular scales by inflationary gravitational waves, and at small angular scales by gravitational lensing. These measurements provide constraints on various cosmological and particle physics parameters, such as the tensor-to-scalar ratio rr, and the sum of the neutrino masses. The Simons Array consists of three 3.5 m diameter telescopes with upgraded POLARBEAR-2 (PB-2) cryogenic receivers, named PB-2a, -2b, and -2c. PB-2a and -2b will observe the CMB over multiple bands centered at 95 GHz and 150 GHz, while PB-2c will observe at 220 GHz and 270 GHz, which will enable enhanced foreground separation and de-lensing. Each Simons Array receiver consists of two cryostats which share the same vacuum space: an optics tube containing the cold reimaging lenses and Lyot stop, infrared-blocking filters, and cryogenic half-wave plate; and a backend which contains the focal plane detector array, cold readout components, and millikelvin refrigerator. Each PB-2 focal plane array is comprised of 7,588 dual-polarization, multi-chroic, lenslet- and antenna-coupled, Transition Edge Sensor (TES) bolometers which are cooled to 250 mK and read out using Superconducting Quantum Interference Devices (SQUIDs) through a digital frequency division multiplexing scheme with a multiplexing factor of 40. In this work we describe progress towards commissioning the PB-2b and -2c receivers including cryogenic design, characterization, and performance of both the PB-2b and -2c backend cryostats.Comment: 20 page

    Laminate polyethylene window development for large aperture millimeter receivers

    Full text link
    New experiments that target the B-mode polarization signals in the Cosmic Microwave Background require more sensitivity, more detectors, and thus larger-aperture millimeter-wavelength telescopes, than previous experiments. These larger apertures require ever larger vacuum windows to house cryogenic optics. Scaling up conventional vacuum windows, such as those made of High Density Polyethylene (HDPE), require a corresponding increase in the thickness of the window material to handle the extra force from the atmospheric pressure. Thicker windows cause more transmission loss at ambient temperatures, increasing optical loading and decreasing sensitivity. We have developed the use of woven High Modulus Polyethylene (HMPE), a material 100 times stronger than HDPE, to manufacture stronger, thinner windows using a pressurized hot lamination process. We discuss the development of a specialty autoclave for generating thin laminate vacuum windows and the optical and mechanical characterization of full scale science grade windows, with the goal of developing a new window suitable for BICEP Array cryostats and for future CMB applications

    Investigation of Griffithsin's Interactions with Human Cells Confirms Its Outstanding Safety and Efficacy Profile as a Microbicide Candidate

    Get PDF
    Many natural product-derived lectins such as the red algal lectin griffithsin (GRFT) have potent in vitro activity against viruses that display dense clusters of oligomannose N-linked glycans (NLG) on their surface envelope glycoproteins. However, since oligomannose NLG are also found on some host proteins it is possible that treatment with antiviral lectins may trigger undesirable side effects. For other antiviral lectins such as concanavalin A, banana lectin and cyanovirin-N (CV-N), interactions between the lectin and as yet undescribed cellular moieties have been reported to induce undesirable side effects including secretion of inflammatory cytokines and activation of host T-cells. We show that GRFT, unlike CV-N, binds the surface of human epithelial and peripheral blood mononuclear cells (PBMC) through an exclusively oligosaccharide-dependent interaction. In contrast to several other antiviral lectins however, GRFT treatment induces only minimal changes in secretion of inflammatory cytokines and chemokines by epithelial cells or human PBMC, has no measureable effect on cell viability and does not significantly upregulate markers of T-cell activation. In addition, GRFT appears to retain antiviral activity once bound to the surface of PBMC. Finally, RNA microarray studies show that, while CV-N and ConA regulate expression of a multitude of cellular genes, GRFT treatment effects only minimal alterations in the gene expression profile of a human ectocervical cell line. These studies indicate that GRFT has an outstanding safety profile with little evidence of induced toxicity, T-cell activation or deleterious immunological consequence, unique attributes for a natural product-derived lectin

    In Silico Investigation of Potential Src Kinase Ligands from Traditional Chinese Medicine

    Get PDF
    Src kinase is an attractive target for drug development based on its established relationship with cancer and possible link to hypertension. The suitability of traditional Chinese medicine (TCM) compounds as potential drug ligands for further biological evaluation was investigated using structure-based, ligand-based, and molecular dynamics (MD) analysis. Isopraeroside IV, 9alpha-hydroxyfraxinellone-9-O-beta-D-glucoside (9HFG) and aurantiamide were the top three TCM candidates identified from docking. Hydrogen bonds and hydrophobic interactions were the primary forces governing docking stability. Their stability with Src kinase under a dynamic state was further validated through MD and torsion angle analysis. Complexes formed by TCM candidates have lower total energy estimates than the control Sacaratinib. Four quantitative-structural activity relationship (QSAR) in silico verifications consistently suggested that the TCM candidates have bioactive properties. Docking conformations of 9HFG and aurantiamide in the Src kinase ATP binding site suggest potential inhibitor-like characteristics, including competitive binding at the ATP binding site (Lys295) and stabilization of the catalytic cleft integrity. The TCM candidates have significantly lower ligand internal energies and are estimated to form more stable complexes with Src kinase than Saracatinib. Structure-based and ligand-based analysis support the drug-like potential of 9HFG and aurantiamide and binding mechanisms reveal the tendency of these two candidates to compete for the ATP binding site

    Preconception Care Between Pregnancies: The Content of Internatal Care

    Get PDF
    For more than two decades, prenatal care has been a cornerstone of our nation’s strategy for improving pregnancy outcomes. In recent years, however, a growing recognition of the limits of prenatal care and the importance of maternal health before pregnancy has drawn increasing attention to preconception and internatal care. Internatal care refers to a package of healthcare and ancillary services provided to a woman and her family from the birth of one child to the birth of her next child. For healthy mothers, internatal care offers an opportunity for wellness promotion between pregnancies. For high-risk mothers, internatal care provides strategies for risk reduction before their next pregnancy. In this paper we begin to define the contents of internatal care. The core components of internatal care consist of risk assessment, health promotion, clinical and psychosocial interventions. We identified several priority areas, such as FINDS (family violence, infections, nutrition, depression, and stress) for risk assessment or BBEEFF (breastfeeding, back-to-sleep, exercise, exposures, family planning and folate) for health promotion. Women with chronic health conditions such as hypertension, diabetes, or weight problems should receive on-going care per clinical guidelines for their evaluation, treatment, and follow-up during the internatal period. For women with prior adverse outcomes such as preterm delivery, we propose an internatal care model based on known etiologic pathways, with the goal of preventing recurrence by addressing these biobehavioral pathways prior to the next pregnancy. We suggest enhancing service integration for women and families, including possibly care coordination and home visitation for selected high-risk women. The primary aim of this paper is to start a dialogue on the content of internatal care

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore