132 research outputs found

    Two-Photon Excitation of Low-Lying Electronic Quadrupole States in Atomic Clusters

    Full text link
    A simple scheme of population and detection of low-lying electronic quadrupole modes in free small deformed metal clusters is proposed. The scheme is analyzed in terms of the TDLDA (time-dependent local density approximation) calculations. As test case, the deformed cluster Na11+Na^+_{11} is considered. Long-living quadrupole oscillations are generated via resonant two-photon (two-dipole) excitation and then detected through the appearance of satellites in the photoelectron spectra generated by a probe pulse. Femtosecond pump and probe pulses with intensities I=2⋅1010−2⋅1011W/cm2I = 2\cdot 10^{10} - 2\cdot 10^{11} W/cm^2 and pulse duration T=200−500T = 200 - 500 fs are found to be optimal. The modes of interest are dominated by a single electron-hole pair and so their energies, being combined with the photoelectron data for hole states, allow to gather new information about mean-field spectra of valence electrons in the HOMO-LUMO region. Besides, the scheme allows to estimate the lifetime of electron-hole pairs and hence the relaxation time of electronic energy into ionic heat.Comment: 4 pages, 4 figure

    Hindered Coulomb explosion of embedded Na clusters -- stopping, shape dynamics and energy transport

    Full text link
    We investigate the dynamical evolution of a Na8_8 cluster embedded in Ar matrices of various sizes from N=30 to 1048. The system is excited by an intense short laser pulse leading to high ionization stages. We analyze the subsequent highly non-linear motion of cluster and Ar environment in terms of trajectories, shapes, and energy flow. The most prominent effects are: temporary stabilization of high charge states for several ps, sudden stopping of the Coulomb explosion of the embedded Na8_8 clusters associated with an extremely fast energy transfer to the Ar matrix, fast distribution of energy throughout the Ar layers by a sound wave. Other ionic-atomic transfer and relaxation processes proceed at slower scale of few ps. The electron cloud is almost thermally decoupled from ions and thermalizes far beyond the ps scale.Comment: 12 pages, 10 figures, accepted in Euro. Phys. J.

    Hartree-Fock dynamics in highly excited quantum dots

    Full text link
    Time-dependent Hartree-Fock theory is used to describe density oscillations of symmetry-unrestricted two-dimensional nanostructures. In the small amplitude limit the results reproduce those obtained within a perturbative approach such as the linearized time-dependent Hartree-Fock one. The nonlinear regime is explored by studying large amplitude oscillations in a non-parabolic potential, which are shown to introduce a strong coupling with internal degrees of freedom. This excitation of internal modes, mainly of monopole and quadrupole character, results in sizeable modifications of the dipole absorption.Comment: 4 pages, 4 embedded figure

    Enhanced ionization in small rare gas clusters

    Get PDF
    A detailed theoretical investigation of rare gas atom clusters under intense short laser pulses reveals that the mechanism of energy absorption is akin to {\it enhanced ionization} first discovered for diatomic molecules. The phenomenon is robust under changes of the atomic element (neon, argon, krypton, xenon), the number of atoms in the cluster (16 to 30 atoms have been studied) and the fluency of the laser pulse. In contrast to molecules it does not dissappear for circular polarization. We develop an analytical model relating the pulse length for maximum ionization to characteristic parameters of the cluster

    Time-Dependent Density Functional Theory with Ultrasoft Pseudopotential: Real-Time Electron Propagation across Molecular Junction

    Full text link
    A practical computational scheme based on time-dependent density functional theory (TDDFT) and ultrasoft pseudopotential (USPP) is developed to study electron dynamics in real time. A modified Crank-Nicolson time-stepping algorithm is adopted, under planewave basis. The scheme is validated by calculating the optical absorption spectra for sodium dimer and benzene molecule. As an application of this USPP-TDDFT formalism, we compute the time evolution of a test electron packet at the Fermi energy of the left metallic lead crossing a benzene-(1,4)-dithiolate junction. A transmission probability of 5-7%, corresponding to a conductance of 4.0-5.6muS, is obtained. These results are consistent with complex band structure estimates, and Green's function calculation results at small bias voltages

    Charge-Induced Fragmentation of Sodium Clusters

    Get PDF
    The fission of highly charged sodium clusters with fissilities X>1 is studied by {\em ab initio} molecular dynamics. Na_{24}^{4+} is found to undergo predominantly sequential Na_{3}^{+} emission on a time scale of 1 ps, while Na_{24}^{Q+} (5 \leq Q \leq 8) undergoes multifragmentation on a time scale \geq 0.1 ps, with Na^{+} increasingly the dominant fragment as Q increases. All singly-charged fragments Na_{n}^{+} up to size n=6 are observed. The observed fragment spectrum is, within statistical error, independent of the temperature T of the parent cluster for T \leq 1500 K. These findings are consistent with and explain recent trends observed experimentally.Comment: To appear in Physical Review Letter

    Scissors modes in triaxial metal clusters

    Get PDF
    We study the scissors mode (orbital M1 excitations) in small Na clusters, triaxial metal clusters Na12{\rm Na}_{12} and Na16{\rm Na}_{16} and the close-to-spherical Na9+{{\rm Na}_9}^+, all described in DFT with detailed ionic background. The scissors modes built on spin-saturated ground and spin-polarized isomeric states are analyzed in virtue of both macroscopic collective and microscopic shell-model treatments. It is shown that the mutual destruction of Coulomb and the exchange-correlation parts of the residual interaction makes the collective shift small and the net effect can depend on details of the actual excited state. The crosstalk with dipole and spin-dipole modes is studied in detail. In particular, a strong crosstalk with spin-dipole negative-parity mode is found in the case of spin-polarized states. Triaxiality and ionic structure considerably complicate the scissors response, mainly at expense of stronger fragmentation of the strength. Nevertheless, even in these complicated cases the scissors mode is mainly determined by the global deformation. The detailed ionic structure destroys the spherical symmetry and can cause finite M1 response (transverse optical mode) even in clusters with zero global deformation. But its strength turns out to be much smaller than for the genuine scissors modes in deformed systems.Comment: 17 pages, 5 figure

    Cluster ionization via two-plasmon excitation

    Get PDF
    We calculate the two-photon ionization of clusters for photon energies near the surface plasmon resonance. The results are expressed in terms of the ionization rate of a double plasmon excitation, which is calculated perturbatively. For the conditions of the experiment by Schlipper et al., we find an ionization rate of the order of 0.05-0.10 fs^(-1). This rate is used to determine the ionization probability in an external field in terms of the number of photons absorbed and the duration of the field. The probability also depends on the damping rate of the surface plasmon. Agreement with experiment can only be achieved if the plasmon damping is considerably smaller than its observed width in the room-temperature single-photon absorption spectrum.Comment: 17 pages and 6 PostScript figure
    • 

    corecore