14 research outputs found

    High-performing vapor-cell frequency standards

    Get PDF
    Many nowadays scientific and technological applications need very precise time and frequency reference signals. Very often, only atomic clocks can guarantee the high level of accuracy and stability required by these signals. In the current scenario of atomic frequency standards, vapor-cell clocks are particularly suited to be employed in those activities that demand good frequency stability performances joined to compactness, reliability and low power consumption. Recently, due to better-performing laser sources and to innovative techniques to prepare and detect the atoms, several cell-based prototypes exhibiting unprecedented frequency stability have been developed. We review advances in the field of laser-pumped vapor-cell clocks and we provide an overview of the techniques that allowed to achieve frequency stabilities in the order of 1×10^−13 at 1 s (short term) and in the range of 10^−15 for the medium-long term. These stabilities are two orders of magnitude better than current commercial Rb clocks. We also prospect the possibility of further improving these results.Many nowadays scientific and technological applications need very precise time and frequency reference signals. Very often, only atomic clocks can guarantee the high level of accuracy and stability required by these signals. In the current scenario of atomic frequency standards, vapor-cell clocks are particularly suited to be employed in those activities that demand good frequency stability performances joined to compactness, reliability and low power consumption. Recently, due to better-performing laser sources and to innovative techniques to prepare and detect the atoms, several cell-based prototypes exhibiting unprecedented frequency stability have been developed. We review advances in the field of laser-pumped vapor-cell clocks and we provide an overview of the techniques that allowed to achieve frequency stabilities in the order of 1 x 10(-13) at is (short term) and in the range of 10(-15) for the medium-long term. These stabilities are two orders of magnitude better than current commercial Rb clocks. We also prospect the possibility of further improving these results

    Frequency-doubled Laser System at 780 nm for Pulsed Vapor-cell Clocks

    Get PDF
    We present the development status of a low-noise pulsed laser source suitable for high-performing vapor-cell clocks. The laser is based on a 1560 nm source, frequency doubled to be resonant with the D-2 line of rubidium at 780 nm. The laser system is able to deliver laser pulses with programmable amplitude and length. The intensity noise of the laser during the pulses duration is also actively reduced by means of the same fast analog control loop generating the pulses. The pulses characteristics are shown to be compatible with the specifications of a high-performing Pulsed Optically Pumped (POP) clock

    Direct Measurement of Laser Noise Spectrum with a Frequency-to-Voltage Converter

    Get PDF
    The stability performance of laser-pumped Rb-cell atomic clocks is affected by the laser spectral characteristics. It is then important to investigate the laser spectrum, especially since laser noise measurements are rarely found in the literature. We present a frequency-noise power spectrum characterization of a laser diode currently employed in a high-performing Rb clock. The measurement is performed by using a narrow-linewidth reference laser. The beatnote between the two sources is processed with a custom frequency-to-voltage (f/V) converter whose output is finally digitized with an FFT spectrum analyzer

    Somatic growth dynamics of West Atlantic hawksbill sea turtles: a spatio-temporal perspective

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Somatic growth dynamics are an integrated response to environmental conditions. Hawksbill sea turtles (Eretmochelys imbricata) are long-lived, major consumers in coral reef habitats that move over broad geographic areas (hundreds to thousands of kilometers). We evaluated spatio-temporal effects on hawksbill growth dynamics over a 33-yr period and 24 study sites throughout the West Atlantic and explored relationships between growth dynamics and climate indices. We compiled the largest ever data set on somatic growth rates for hawksbills – 3541 growth increments from 1980 to 2013. Using generalized additive mixed model analyses, we evaluated 10 covariates, including spatial and temporal variation, that could affect growth rates. Growth rates throughout the region responded similarly over space and time. The lack of a spatial effect or spatio-temporal interaction and the very strong temporal effect reveal that growth rates in West Atlantic hawksbills are likely driven by region-wide forces. Between 1997 and 2013, mean growth rates declined significantly and steadily by 18%. Regional climate indices have significant relationships with annual growth rates with 0- or 1-yr lags: positive with the Multivariate El Niño Southern Oscillation Index (correlation = 0.99) and negative with Caribbean sea surface temperature (correlation = −0.85). Declines in growth rates between 1997 and 2013 throughout the West Atlantic most likely resulted from warming waters through indirect negative effects on foraging resources of hawksbills. These climatic influences are complex. With increasing temperatures, trajectories of decline of coral cover and availability in reef habitats of major prey species of hawksbills are not parallel. Knowledge of how choice of foraging habitats, prey selection, and prey abundance are affected by warming water temperatures is needed to understand how climate change will affect productivity of consumers that live in association with coral reefs

    6/12-channel Synchronous Digital Phasemeter for Ultrastable Signal Characterization and Use

    No full text
    Nowadays, in primary time and frequency laboratories we can find high spectral purity signals in the 10 MHz - 10 GHz range generated from cryogenic oscillators or ultra-stable lasers together with frequency combs. Their short-term stability surpasses by one to two orders of magnitude the performances of active hydrogen masers (AHM), while in the long-term AHMs still have a better behavior. The new technology can be considered mature for what concern spectral purity, but we cannot say the same about complexity, power consumption and reliability. In this sense, it is important to measure ultra-stable sources with respect to AHMs. First, to test their spectral purity or, at least, to give it an upper bound; second to have a continuous monitoring; finally, to combine them in order to get the best of all in term of phase noise and frequency stability. All of these requirements can be satisfied by the system we are developing. It is a multi-channel synchronous and real-time phasemeter based on Tracking Direct Digital Synthesizer (TDDS) technique. The results related to the first prototype are presented

    Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    No full text
    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be −109 and −141 dB rad2/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is −105 and −138 dB rad2/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 ×10−14 for the Cs cell clock and 2 ×10−14 for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10−15 level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards

    Frequency Noise Characterization of Diode Lasers for Vapor-Cell Clock Applications

    No full text
    The knowledge of the frequency noise spectrum of a diode laser is of interest in several high-resolution experiments. Specifically, in laser-pumped vapor-cell clocks, it is well-established that the laser frequency noise plays a role in affecting clock performances. It is then relevant to characterize the frequency noise of a diode laser since such measurements are rarely found in the literature and hardly ever provided by vendors. In this article, we describe a technique based on a frequency-to-voltage (f/V) converter that transforms the laser frequency fluctuations into voltage fluctuations. In this way, it is possible to characterize the laser frequency noise power spectral density (PSD) in a wide range of Fourier frequencies, as required in cell clock applications
    corecore