1,267 research outputs found

    Patterns of variability in early life traits of a Mediterranean coastal fish

    Get PDF
    Spawning dates and pelagic larval duration (PLD) are early life traits (ELT) crucial for understanding life cycles, properly assessing patterns of connectivity and gathering indications about patchiness or homogeneity of larval pools. Considering that little attention has been paid to spatial variability in these traits, we investigated variability of ELT from the analysis of otolith microstructure in the common two-banded sea bream Diplodus vulgaris. In the southwestern Adriatic Sea, along ~200 km of coast (āˆ¼1Ā° in latitude, 41.2Ā° to 40.2Ā°N), variability of ELT was assessed at multiple spatial scales. Overall, PLD (ranging from 25 to 61 d) and spawning dates (October 2009 to February 2010) showed significant variability at small scales (i.e. <6 km), but not at larger scales. These outcomes suggest patchiness of the larval pool at small spatial scales. Multiple causal processes underlying the observed variability are discussed, along with the need to properly consider spatial variability in ELT, for example when delineating patterns of connectivity. Copyright Ā© 2013 Inter-Research

    An explicit predictor/multicorrector time marching with automatic adaptivity for finite-strain elastodynamics

    Full text link
    We propose a time-adaptive predictor/multi-corrector method to solve hyperbolic partial differential equations, based on the generalized-Ī±\alpha scheme that provides user-control on the numerical dissipation and second-order accuracy in time. Our time adaptivity uses an error estimation that exploits the recursive structure of the variable updates. The predictor/multicorrector method explicitly updates the equation system but computes the residual of the system implicitly. We analyze the method's stability and describe how to determine the parameters that ensure high-frequency dissipation and accurate low-frequency approximation. Subsequently, we solve a linear wave equation, followed by non-linear finite strain deformation problems with different boundary conditions. Thus, our method is a straightforward, stable and computationally efficient approach to simulate real-world engineering problems. Finally, to show the performance of our method, we provide several numerical examples in two and three dimensions. These challenging tests demonstrate that our predictor/multicorrector scheme dynamically adapts to sudden energy releases in the system, capturing impacts and boundary shocks. The method efficiently and stably solves dynamic equations with consistent and under-integrated mass matrices conserving the linear and angular momenta as well as the system's energy for long-integration times.Comment: Journal of Computational Physics (accepted

    Depopulation of dense Ī±-synuclein aggregates is associated with rescue of dopamine neuron dysfunction and death in a new Parkinson's disease model.

    No full text
    Parkinson's disease (PD) is characterized by the presence of Ī±-synuclein aggregates known as Lewy bodies and Lewy neurites, whose formation is linked to disease development. The causal relation between Ī±-synuclein aggregates and PD is not well understood. We generated a new transgenic mouse line (MI2) expressing human, aggregation-prone truncated 1-120 Ī±-synuclein under the control of the tyrosine hydroxylase promoter. MI2 mice exhibit progressive aggregation of Ī±-synuclein in dopaminergic neurons of the substantia nigra pars compacta and their striatal terminals. This is associated with a progressive reduction of striatal dopamine release, reduced striatal innervation and significant nigral dopaminergic nerve cell death starting from 6 and 12 months of age, respectively. In the MI2 mice, alterations in gait impairment can be detected by the DigiGait test from 9 months of age, while gross motor deficit was detected by rotarod test at 20 months of age when 50% of dopaminergic neurons in the substantia nigra pars compacta are lost. These changes were associated with an increase in the number and density of 20-500 nm Ī±-synuclein species as shown by dSTORM. Treatment with the oligomer modulator anle138b, from 9 to 12 months of age, restored striatal dopamine release, prevented dopaminergic cell death and gait impairment. These effects were associated with a reduction of the inner density of large Ī±-synuclein aggregates and an increase in dispersed small Ī±-synuclein species as revealed by dSTORM. The MI2 mouse model recapitulates the progressive dopaminergic deficit observed in PD, showing that early synaptic dysfunction is associated to fine behavioral motor alterations, precedes dopaminergic axonal loss and neuronal death that become associated with a more consistent motor deficit upon reaching a certain threshold. Our data also provide new mechanistic insight for the effect of anle138b's function in vivo supporting that targeting Ī±-synuclein aggregation is a promising therapeutic approach for PD

    Numerical simulation of spheres moving and colliding close to bed streams, with a complete characterization of turbulence

    Get PDF
    River morphodynamics and sediment transportMechanics of sediment transpor
    • ā€¦
    corecore