16 research outputs found

    Validation of a serum ELISA test for cyathostomin infection in equines

    Get PDF
    Cyathostomins are ubiquitous equine nematodes. Infection can result in larval cyathostominosis due to mass larval emergence. Although faecal egg count (FEC) tests provide estimates of egg shedding, these correlate poorly with burden and provide no information on mucosal/luminal larvae. Previous studies describe a serum IgG(T)-based ELISA (CT3) that exhibits utility for detection of mucosal/luminal cyathostomins. Here, this ELISA is optimised/validated for commercial application using sera from horses for which burden data were available. Optimisation included addition of total IgG-based calibrators to provide standard curves for quantification of antigen-specific IgG(T) used to generate a CT3-specific 'serum score' for each horse. Validation dataset results were then used to assess the optimised test's performance and select serum score cut-off values for diagnosis of burdens above 1,000, 5,000 and 10,000 cyathostomins. The test demonstrated excellent performance (Receiver Operating Characteristic Area Under the Curve values >0.9) in diagnosing infection, with >90% sensitivity and >70% specificity at the selected serum score cut-off values. CT3-specific serum IgG(T) profiles in equines in different settings were assessed to provide information for commercial test use. These studies demonstrated maternal transfer of CT3-specific IgG(T) in colostrum to newborns, levels of which declined before increasing as foals consumed contaminated pasture. Studies in geographically distinct populations demonstrated that the proportion of horses that reported as test positive at a 14.37 CT3 serum score (1,000-cyathostomin threshold) was associated with parasite transmission risk. Based on the results, inclusion criteria for commercial use were developed. Logistic regression models were developed to predict probabilities that burdens of individuals are above defined thresholds based on the reported serum score. The models performed at a similar level to the serum score cut-off approach. In conclusion, the CT3 test provides an option for veterinarians to obtain evidence of low cyathostomin burdens that do not require anthelmintic treatment and to support diagnosis of infection

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Cerebrospinal fluid and serum proteomic profiles accurately distinguish neuroaxonal dystrophy from cervical vertebral compressive myelopathy in horses

    No full text
    Abstract Background Cervical vertebral compressive myelopathy (CVCM) and equine neuroaxonal dystrophy/degenerative myeloencephalopathy (eNAD/EDM) are leading causes of spinal ataxia in horses. The conditions can be difficult to differentiate, and there is currently no diagnostic modality that offers a definitive antemortem diagnosis. Objective Evaluate novel proteomic techniques and machine learning algorithms to predict biomarkers that can aid in the antemortem diagnosis of noninfectious spinal ataxia in horses. Animals Banked serum and cerebrospinal fluid (CSF) samples from necropsy‐confirmed adult eNAD/EDM (n = 47) and CVCM (n = 25) horses and neurologically normal adult horses (n = 45). Methods . A subset of serum and CSF samples from eNAD/EDM (n = 5) and normal (n = 5) horses was used to evaluate the proximity extension assay (PEA). All samples were assayed by PEA for 368 neurologically relevant proteins. Data were analyzed using machine learning algorithms to define potential diagnostic biomarkers. Results Of the 368 proteins, 84 were detected in CSF and 146 in serum. Eighteen of 84 proteins in CSF and 30/146 in serum were differentially abundant among the 3 groups, after correction for multiple testing. Modeling indicated that a 2‐protein test using CSF had the highest accuracy for discriminating among all 3 groups. Cerebrospinal fluid R‐spondin 1 (RSPO1) and neurofilament‐light (NEFL), in parallel, predicted normal horses with an accuracy of 87.18%, CVCM with 84.62%, and eNAD/EDM with 73.5%. Main Limitations Cross‐species platform. Uneven sample size. Conclusions and Clinical Importance Proximity extension assay technology allows for rapid screening of equine biologic matrices for potential protein biomarkers. Machine learning analysis allows for unbiased selection of highly accurate biomarkers from high‐dimensional data

    Functional annotation of the animal genomes: An integrated annotation resource for the horse.

    Get PDF
    The genomic sequence of the horse has been available since 2009, providing critical resources for discovering important genomic variants regarding both animal health and population structures. However, to fully understand the functional implications of these variants, detailed annotation of the horse genome is required. Due to the limited availability of functional data for the equine genome, as well as the technical limitations of short-read RNA-seq, existing annotation of the equine genome contains limited information about important aspects of gene regulation, such as alternate isoforms and regulatory elements, which are either not transcribed or transcribed at a very low level. To solve above problems, the Functional Annotation of the Animal Genomes (FAANG) project proposed a systemic approach to tissue collection, phenotyping, and data generation, adopting the blueprint laid out by the Encyclopedia of DNA Elements (ENCODE) project. Here we detail the first comprehensive overview of gene expression and regulation in the horse, presenting 39,625 novel transcripts, 84,613 candidate cis-regulatory elements (CRE) and their target genes, 332,115 open chromatin regions genome wide across a diverse set of tissues. We showed substantial concordance between chromatin accessibility, chromatin states in different genic features and gene expression. This comprehensive and expanded set of genomics resources will provide the equine research community ample opportunities for studies of complex traits in the horse

    Generation of a Biobank From Two Adult Thoroughbred Stallions for the Functional Annotation of Animal Genomes Initiative

    Get PDF
    Following the successful creation of a biobank from two adult Thoroughbred mares, this study aimed to recapitulate sample collection in two adult Thoroughbred stallions as part of the Functional Annotation of the Animal Genome (FAANG) initiative. Both stallions underwent thorough physical, lameness, neurologic, and ophthalmic (including electroretinography) examinations prior to humane euthanasia. Epididymal sperm was recovered from both stallions immediately postmortem and cryopreserved. Aseptically collected full thickness skin biopsies were used to isolate, culture and cryopreserve dermal fibroblasts. Serum, plasma, cerebrospinal fluid, urine, and gastrointestinal content from various locations were collected and cryopreserved. Under guidance of a board-certified veterinary anatomic pathologist, 102 representative tissue samples were collected from both horses. Whole tissue samples were flash-frozen and prioritized tissues had nuclei isolated and cryopreserved. Spatially contemporaneous samples of each tissue were submitted for histologic examination. Antemortem and gross pathologic examination revealed mild abnormalities in both stallions. One stallion (ECA_UCD_AH3) had unilateral thoracic limb lameness and bilateral chorioretinal scars. The second stallion (ECA_UCD_AH4) had subtle symmetrical pelvic limb ataxia, symmetrical prostatomegally, and moderate gastrointestinal nematodiasis. DNA from each was whole-genome sequenced and genotyped using the GGP Equine 70K SNP array. The genomic resources and banked biological samples from these animals augments the existing resource available to the equine genomics community. Importantly we may now improve the resolution of tissue-specific gene regulation as affected by sex, as well as add sex-specific tissues and gametes

    Increased α-tocopherol metabolism in horses with equine neuroaxonal dystrophy.

    No full text
    BackgroundEquine neuroaxonal dystrophy/equine degenerative myeloencephalopathy (eNAD/EDM) is an inherited neurodegenerative disorder associated with a vitamin E deficiency within the first year of life. Vitamin E consists of 8 isoforms metabolized by the CYP4F2 enzyme. No antemortem diagnostic test currently exists for eNAD/EDM.Hypothesis/objectivesBased on the association of α-tocopherol deficiency with the development of eNAD/EDM, we hypothesized that the rate of α-tocopherol, but not γ-tocopherol or tocotrienol metabolism, would be increased in eNAD/EDM-affected horses.AnimalsVitamin E metabolism: Proof of concept (POC) study; eNAD/EDM-affected (n = 5) and control (n = 6) horses. Validation study: eNAD/EDM-affected Quarter Horses (QHs; n = 6), cervical vertebral compressive myelopathy affected (n = 6) horses and control (n = 29) horses. CYP4F2 expression and copy number: eNAD/EDM-affected (n = 12) and age- and sex-matched control (n = 11-12) horses.MethodsThe rates of α-tocopherol/tocotrienol and γ-tocopherol/tocotrienol metabolism were assessed in equine serum (POC and validation) and urine (POC only) using liquid chromatography tandem mass spectrometry (LC-MS/MS). Quantitative reverse-transcriptase PCR (qRT-PCR) and droplet digital (dd)-PCR were used to assay expression and genomic copy number of a CYP4F2 equine ortholog.ResultsMetabolic rate of α-tocopherol was increased in eNAD/EDM horses (POC,P < .0001; validation, P = .03), with no difference in the metabolic rate of γ-tocopherol. Horses with eNAD/EDM had increased expression of the CYP4F2 equine orthologue (P = .02) but no differences in copy number.Conclusions and clinical importanceIncreased α-tocopherol metabolism in eNAD/EDM-affected QHs provides novel insight into alterations in vitamin E processing in eNAD/EDM and highlights the need for high-dose supplementation to prevent the clinical phenotype in genetically susceptible horses
    corecore