87 research outputs found
Fouling Release Nanostructured Coatings based on PDMS-polyurea Segmented Copolymers
http://www.elsevier.com/wps/find/journaldescription.cws_home/30466/description#descriptionThe bulk and surface characteristics of a series of coatings based on PDMS-polyurea segmented copolymers were correlated to their fouling release performance. Incorporation of polyurea segments to PDMS backbone gives rise to phase separation with the extensively hydrogen bonded hard domains creating an interconnected network that imparts mechanical rigidity. Increasing the compositional complexity of the system by including fluorinated or POSS-functionalized chain extenders or through nanoclay intercalation, confers further thermomechanical improvements. In analogy to the bulk morphology, the surface toporgraphy also reflects the compositional complexity of the materials, displaying a wide range of motifs. Investigations on settlement and subsequent removal of Ulva sporelings on those nanostructured surfaces indicate that the work required to remove the microorganisms is significantly lower compared to coatings based on standard PDMS homopolymer. All in all, the series of materials considered in this study demonstrate advanced fouling release properties, while exhibiting superior mechanical properties and thus, long term durability. (C) 2010 Elsevier Ltd. All rights reserved.This publication is based on work supported by the Office of Naval Research. This publication is also based on work supported in part by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). We acknowledge facility support through the Cornell Center for Materials Research (CCMR) and the Nanobiotechnology Center (NBTC)
Amphiphilic modified-styrene copolymer films: Antifouling/fouling release properties against the green alga Ulva linza
Surface-active copolymers of a styrene carrying a polysiloxane side chain (SSi) and a triethyleneglycol monomethyl ether-modified pentafluorostyrene (EFS) (39 and 77 mol% EFS) were prepared and incorporated (8 wt% loading) into a polydimethyl siloxane (PDMS) matrix to produce crosslinked blend films. The wettability of the surface-active copolymer films and PDMS-blend films was investigated by contact angle measurements. An angle-resolved X-ray photoelectron spectroscopy (XPS) of the surface chemical composition before and after immersion in water for 7 days enabled location of the hydrophilic oxyethylenic segments of EFS within the top 10 nm from the film surface. Laboratory bioassays on the blend films against the marine green alga Ulva linza evidenced that the films containing the copolymer with the larger EFS content showed greater resistance to settlement of zoospores of U. linza, whereas both films had superior fouling-release properties of sporelings (young plants) compared to the PDMS standard films
Amphiphilic pentablock copolymers and their blends with PDMS for antibiofouling coatings
Well-defined amphiphilic pentablock copolymers Siy-(EGx-FAz)2 composed of polysiloxane (Si), polyethylene glycol (EG), and perfluorohexylethyl polyacrylate (FA) blocks are synthesized by ATRP of FA monomer starting from a difunctional bromo-terminated macroinitiator. Diblock copolymers EGx-FAz are also synthesized as model systems. The block copolymers are used, either alone or blended with a PDMS matrix in varied loadings, to prepare antibiofouling coatings. Angle-resolved XPS and contact angle measurements show that the coating surface is highly enriched in fluorine content but undergoes reconstruction after contact with water. Protein adsorption experiments with human serum albumin and calf serum highlight that diblock copolymers resist protein adhesion better than do pentablock copolymers. Blending of the pentablock copolymer with PDMS results in increased protein adsorption. By contrast, the PDMS-matrix coatings show high removal percentages of sporelings of the green fouling alga Ulva linz
Evaluation of the attachment strength of individuals of Asterina gibbosa (AsteroĂŻdea, Echinodermata) during the perimetamorphic period
peer reviewedA turbulent channel flow apparatus was used to determine the adhesion strength of the three perimetamorphic stages of the asteroid Asterina gibbosa, i.e. the brachiolaria larvae, the metamorphic individuals and the juveniles. The mean critical wall shear stresses (wall shear stress required to dislodge 50% of the attached individuals) necessary to detach larvae attached by the brachiolar arms (1.2 Pa) and juveniles attached by the tube feet (7.1 Pa) were one order of magnitude lower than the stress required to dislodge metamorphic individuals attached by the adhesive disc (41 Pa). This variability in adhesion strength reflects differences in the functioning of the adhesive organs for these different life stages of sea stars. Brachiolar arms and tube feet function as temporary adhesion organs, allowing repetitive cycles of attachment to and detachment from the substratum, whereas the adhesive disc is used only once, at the onset of metamorphosis, and is responsible for the strong attachment of the metamorphic individual, which can be described as permanent adhesion. The results confirm that the turbulent water channel apparatus is a powerful tool to investigate the adhesion mechanisms of minute organisms
Effects of surface-active block copolymers with oxyethylene and fluoroalkyl side chains on the antifouling performance of silicone-based films
Block copolymers made from a poly(dimethyl siloxane) (Si) and a poly(meth)acrylate carrying oxyethylene (EG) or fluoroalkyl (AF) side chains were synthesized and incorporated as surface-active components into a silicone matrix to produce cross-linked films with different surface hydrophilicity/phobicity. Near-edge X-ray absorption fine structure (NEXAFS) studies showed that film surfaces containing Si-EG were largely populated by the siloxane, with the oxyethylene chains present only to a minor extent. In contrast, the fluorinated block was selectively segregated to the polymer–air interface in films containing Si-AF as probed by NEXAFS and X-ray photoelectron spectroscopy (XPS) analyses. Such differences in surface composition were reflected in the biological performance of the coatings. While the films with Si-EG showed a higher removal of both Ulva linza sporelings and Balanus amphitrite juveniles than the silicone control, those with Si-AF exhibited excellent antifouling properties, preventing the settlement of cyprids of B. amphitrite
A smoothing spline approach to nonlinear inference for time series
Abstract not availabl
Hybrid Xerogel Films as Novel Coatings for Antifouling and Fouling Release
Hybrid sol-gel-derived xerogel films prepared from 45/55 (mol ratio) n-propyltrimethoxysilane (C3-TMOS)/tetramethylorthosilane (TMOS), 2/98 (mol ratio) bis[3-(trimethoxysilyl)propyl]-ethylenediamine (enTMOS)/tetraethylorthosilane (TEOS), 50/50 (mol ratio) n-octyltriethoxysilane (C8-TEOS)/TMOS, and 50/50 (mol ratio) 3,3,3-trifluoropropyltrimethoxysilane (TFP-TMOS)/TMOS were found to inhibit settlement of zoospores of the marine fouling alga Ulva (syn. Enteromorpha) relative to settlement on acid-washed glass and give greater release of settled zoospores relative to glass upon exposure to pressure from a water jet. The more hydrophobic 50/50 C8-TEOS/TMOS xerogel films had the lowest critical surface tension by comprehensive contact angle analysis and gave significantly greater release of 8-day Ulva sporeling biomass after exposure to turbulent flow generated by a flow channel than the other xerogel surfaces or glass. The 50/50 C8-TEOS/TMOS xerogel was also a fouling release surface for juveniles of the tropical barnacle Balanus amphitrite. X-ray photon electron data indicated that the alkylsilyl residues of the C3-TMOS-, C8-TEOS-, and TFP-TMOS-containing xerogels were located on the surface of the xerogel films (in a vacuum), which contributes to the film hydrophobicity. Similarly, the amine-containing silyl residues of the enTMOS/TEOS films were located at the surface of the xerogel films, which contributes to the more hydrophilic character and increased critical surface tension of these films
- …