34 research outputs found

    Modelling the potential of integrated vegetation bands (IVB) to retain stormwater runoff on steep hillslopes of Southeast Queensland, Australia

    Get PDF
    Rainfall intensity is predicted to increase under a changing climate, leading to increased risks of hillslope erosion, downstream sedimentation and flooding. For many catchments used for grazing and agricultural land uses, it will become increasingly important to maintain ecohydrological functioning despite climatic extremes. One means to achieve this is through strategic reforestation using locally endemic species, in spatial configurations that effectively intercept, retain or and redistribute overland flows. This paper adopts a modelling approach for investigating the potential of one such design termed “integrated vegetation bands” (IVB), to increase the retention of runoff across steep hillslopes, particularly in the sub-tropics where rainstorms are becoming increasingly intense. A spatially distributed simulation model (MIKE-SHE) was applied to a steep, grazed catchment (Maronghi Creek catchment, Southeast Queensland, Australia) to compare stormwater runoff characteristics between: (1) the existing pasture land cover; and (2) a series of hypothetical IVB added across this pasture land. The IVB were approximately 20 m wide, and configured at 5% gradient towards ridgelines. Results for estimates of overland flow depth and infiltration (spatial), and accumulative water balance (temporal), confirm that the area of hillslope retaining > 10 mm/day more runoff increased by 22% under IVB compared to the pasture land use. Excluding the IVB themselves, the area of hillslope where runoff retention increased was 11%. During the most intense rainfall, IVB held up to 25% greater water depth and had 10% greater infiltration at the hillslope scale. At the sub-catchment scale, discharge decreased by 7% and infiltration increased by 23%. The findings for sub-tropical landscapes presented here are consistent with studies conducted in temperate regions. Based on the results of this preliminary modelling work, the IVB concept has been established as a paired-catchment field trial in a high rainfall catchment in Southeast Queensland, Australia

    Blending Landsat and MODIS Data to Generate Multispectral Indices: A Comparison of “Index-then-Blend” and “Blend-then-Index” Approaches

    Get PDF
    The objective of this paper was to evaluate the accuracy of two advanced blending algorithms, Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) to downscale Moderate Resolution Imaging Spectroradiometer (MODIS) indices to the spatial resolution of Landsat. We tested two approaches: (i) "Index-then-Blend" (IB); and (ii) "Blend-then-Index" (BI) when simulating nine indices, which are widely used for vegetation studies, environmental moisture assessment and standing water identification. Landsat-like indices, generated using both IB and BI, were simulated on 45 dates in total from three sites. The outputs were then compared with indices calculated from observed Landsat data and pixel-to-pixel accuracy of each simulation was assessed by calculating the: (i) bias; (ii) R; and (iii) Root Mean Square Deviation (RMSD). The IB approach produced higher accuracies than the BI approach for both blending algorithms for all nine indices at all three sites. We also found that the relative performance of the STARFM and ESTARFM algorithms depended on the spatial and temporal variances of the Landsat-MODIS input indices. Our study suggests that the IB approach should be implemented for blending of environmental indices, as it was: (i) less computationally expensive due to blending single indices rather than multiple bands; (ii) more accurate due to less error propagation; and (iii) less sensitive to the choice of algorithm

    Between a reef and a hard place: capacity to map the next coral reef catastrophe

    Get PDF
    Increasing sea surface temperature and extreme heat events pose the greatest threat to coral reefs globally, with trends exceeding previous norms. The resultant mass bleaching events, such as those evidenced on the Great Barrier Reef in 2016, 2017, and 2020 have substantial ecological costs in addition to economic and social costs. Advancing remote (nanosatellites, rapid revisit traditional satellites) and in-field (drones) technological capabilities, cloud data processing, and analysis, coupled with existing infrastructure and in-field monitoring programs, have the potential to provide cost-effective and timely information to managers allowing them to better understand changes on reefs and apply effective remediation. Within a risk management framework for monitoring coral bleaching, we present an overview of how remote sensing can be used throughout the whole risk management cycle and highlight the role technological advancement has in earth observations of coral reefs for bleaching events

    MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island

    Get PDF
    Short-read, high-throughput sequencing technology cannot identify the chromosomal position of repetitive insertion sequences that typically flank horizontally acquired genes such as bacterial virulence genes and antibiotic resistance genes. The MinION nanopore sequencer can produce long sequencing reads on a device similar in size to a USB memory stick. Here we apply a MinION sequencer to resolve the structure and chromosomal insertion site of a composite antibiotic resistance island in Salmonella Typhi Haplotype 58. Nanopore sequencing data from a single 18-h run was used to create a scaffold for an assembly generated from short-read Illumina data. Our results demonstrate the potential of the MinION device in clinical laboratories to fully characterize the epidemic spread of bacterial pathogens

    Additional file 2: Figure S1. of Weekday snacking prevalence, frequency, and energy contribution have increased while foods consumed during snacking have shifted among Australian children and adolescents: 1995, 2007 and 2011–12 National Nutrition Surveys

    No full text
    Percent of energy consumed by time of day and classification of meal and snack time periods: 1995, 2007 and 2011–12 National Nutrition Surveys. In 1995 n = 2340, 2007 n = 3637, 2011–12 n = 2281. (PDF 71 kb
    corecore