24 research outputs found

    The bradycardic and hypotensive responses to serotonin are reduced by activation of GABA A receptors in the nucleus tractus solitarius of awake rats

    Get PDF
    We investigated the effects of bilateral injections of the GABA receptor agonists muscimol (GABA A) and baclofen (GABA B) into the nucleus tractus solitarius (NTS) on the bradycardia and hypotension induced by iv serotonin injections (5-HT, 2 µg/rat) in awake male Holtzman rats. 5-HT was injected in rats with stainless steel cannulas implanted bilaterally in the NTS, before and 5, 15, and 60 min after bilateral injections of muscimol or baclofen into the NTS. The responses to 5-HT were tested before and after the injection of atropine methyl bromide. Muscimol (50 pmol/50 nl, N = 8) into the NTS increased basal mean arterial pressure (MAP) from 115 ± 4 to 144 ± 6 mmHg, did not change basal heart rate (HR) and reduced the bradycardia (-40 ± 14 and -73 ± 26 bpm at 5 and 15 min, respectively, vs -180 ± 20 bpm for the control) and hypotension (-11 ± 4 and -14 ± 4 mmHg, vs -40 ± 9 mmHg for the control) elicited by 5-HT. Baclofen (12.5 pmol/50 nl, N = 7) into the NTS also increased basal MAP, but did not change basal HR, bradycardia or hypotension in response to 5-HT injections. Atropine methyl bromide (1 mg/kg body weight) injected iv reduced the bradycardic and hypotensive responses to 5-HT injections. The stimulation of GABA A receptors in the NTS of awake rats elicits a significant increase in basal MAP and decreases the cardiac Bezold-Jarisch reflex responses to iv 5-HT injections

    Modulation of Neurally Mediated Vasodepression and Bradycardia by Electroacupuncture through Opioids in Nucleus Tractus Solitarius

    Get PDF
    Abstract Stimulation of vagal afferent endings with intravenous phenylbiguanide (PBG) causes both bradycardia and vasodepression, simulating neurally mediated syncope. Activation of µ-opioid receptors in the nucleus tractus solitarius (NTS) increases blood pressure. Electroacupuncture (EA) stimulation of somatosensory nerves underneath acupoints P5–6, ST36–37, LI6–7 or G37–39 selectively but differentially modulates sympathoexcitatory responses. We therefore hypothesized that EA-stimulation at P5–6 or ST36–37, but not LI6–7 or G37–39 acupoints, inhibits the bradycardia and vasodepression through a µ-opioid receptor mechanism in the NTS. We observed that stimulation at acupoints P5–6 and ST36–37 overlying the deep somatosensory nerves and LI6–7 and G37–39 overlying cutaneous nerves differentially evoked NTS neural activity in anesthetized and ventilated animals. Thirty-min of EA-stimulation at P5–6 or ST36–37 reduced the depressor and bradycardia responses to PBG while EA at LI6–7 or G37–39 did not. Congruent with the hemodynamic responses, EA at P5–6 and ST36–37, but not at LI6–7 and G37–39, reduced vagally evoked activity of cardiovascular NTS cells. Finally, opioid receptor blockade in the NTS with naloxone or a specific μ-receptor antagonist reversed P5–6 EA-inhibition of the depressor, bradycardia and vagally evoked NTS activity. These data suggest that point specific EA stimulation inhibits PBG-induced vasodepression and bradycardia responses through a μ-opioid mechanism in the NTS
    corecore