48 research outputs found

    The Use of Radar Imagery to Assess the Bottom Topography of Shallow Seas

    Get PDF
    Under favourable conditions features of the bottom topography of shallow seas are visible in radar images, which are nowadays obtained from satellites on a routine basis. A Bathymetry Assessment System (BAS) was developed to use these images in order to produce depth maps. This paper describes the principles behind the system, indicates for what type of applications it might be useful, notes on the accuracy and gives an example of an application

    Mapping of sea bottom topography

    Get PDF
    Under suitable conditions the bottom topography of shallow seas is visible in remote sensing radar imagery. Two experiments were performed to establish which remote sensing technique or combination yields optimal imaging of bottom topography and which hydro-meteorological conditions are favorable. A further goal is to gain experience with these techniques. Two experiments were performed over an area in the North Sea near the measuring platform Meetpost Noordwijk (MPN). The bottom topography in the test area is dominated by sand waves. The crests of the sand waves are perpendicular to the coast line and the dominating (tidal-)current direction. A 4x4 sq km wide section of the test area was studied in more detail. The first experiment was undertaken on 16 Aug. 1989. During the experiment the following remote sensing instruments were used: Landsat-Thematic Mapper, and NASA/JPL Airborne Imaging Radar (AIR). The hydro-meteorological conditions; current, wind, wave, and air and water temperature were monitored by MPN, a ship of Rijkswaterstaat (the OCTANS), and a pitch-and-roll WAVEC-buoy. The second experiment took place on 12 July 1992. During this experiment data were collected with the NASA/JPL polarimetric synthetic aperture radar (SAR), and a five-band helicopter-borne scatterometer. Again the hydro-meteorological conditions were monitored at MPN and the OCTANS. Furthermore, interferometric radar data were collected

    Second-line treatment for acute graft-versus-host disease with mesenchymal stromal cells. a decision model

    Get PDF
    Objective: No standard second-line treatment exists for acute graft-versus-host disease steroid-refractory (SR-aGvHD), and long-term outcomes remain poor. Mesenchymal stromal cells (MSCs) have been evaluated as treatment, but no disease model (DM) exists that integrates and extrapolates currently available evidence. The aim of this study was to develop such a DM to describe the natural history of SR-aGvHD and to predict long-term outcomes. Method: The DM was developed in collaboration with experts in haematology-oncology. Subsequently, a model simulation was run. Input parameters for transition and survival estimates were informed by published data of clinical trials on MSC treatment for SR-aGvHD. Parametric distributions were used to estimate long-term survival rates after MSCs. Results: The newly developed DM is a cohort model that consists of eight health states. For the model simulation, we obtained data on 327 patients from 14 published phase II trials. Due to limited evidence, DM structure was simplified and several assumptions had to be made. Median overall survival was 3.2 years for complete response and 0.5 years for no complete response. Conclusion: The DM provides a comprehensive overview on the second-line treatment pathway for aGvHD and enables long-term predictions that can be used to perform a cost-effectiveness analysis comparing any treatment for SR-aGvHD

    Echocardiographic Assessment of Embryonic and Fetal Mouse Heart Development: A Focus on Haemodynamics and Morphology

    Get PDF
    Background. Heart development is a complex process, and abnormal development may result in congenital heart disease (CHD). Currently, studies on animal models mainly focus on cardiac morphology and the availability of hemodynamic data, especially of the right heart half, is limited. Here we aimed to assess the morphological and hemodynamic parameters of normal developing mouse embryos/fetuses by using a high-frequency ultrasound system. Methods. A timed breeding program was initiated with a WT mouse line (Swiss/129Sv background). All recordings were performed transabdominally, in isoflurane sedated pregnant mice, in hearts of sequential developmental stages: 12.5, 14.5, and 17.5 days after conception (n=105). Results. Along development the heart rate increased significantly from 125 ± 9.5 to 219 ± 8.3 beats per minute. Reliable flow measurements could be performed across the developing mitral and tricuspid valves and outflow tract. M-mode measurements could be obtained of all cardiac compartments. An overall increase of cardiac systolic and diastolic function with embryonic/fetal development was observed. Conclusion. High-frequency echocardiography is a promising and useful imaging modality for structural and hemodynamic analysis of embryonic/fetal mouse hearts

    4D flow cardiovascular magnetic resonance consensus statement

    Get PDF
    corecore